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ABBREVIATIONS, CONVENTIONS AND SYMBOLS 

Abbreviations 

CARA: constant absolute risk aversion 

DARA: decreasing absolute risk aversion 

FOC: first order condition 

LARA: increasing absolute risk aversion 

SOC: second order condition 

US DA: United States Department of Agriculture 

USDC: United States Department of Commerce 

Conventions 

Vectors are characterized by bold letters. 

When there is no ambiguity, first and second derivatives are identified either by the 

symbols ' and respectively, or by subscripts. 

Prices and costs are always denoted by small-case letters, and decision variables by 

capital letters. Whenever possible, parameters are designated by Greek letters. 

The subscript t always refers to date t, while the subscript T stands for the terminal 

date. Superscripts o and m are used to characterize soybean oil and soybean meal, 

respectively. 

Symbols 

c(0 = nonmaterial cost function 

d{-) = differential of (•) 

dj = vector of relevant decision variables 
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Cj = vector of relevant predetermined and exogenous variables 

F( ) = cumulative distribution function of the standard normal distribution 

Fj = net short position for delivery of final product at date t+1 open at time t 

fj, fj^t+k = forward prices of final product at date t for delivery at times t+1 and t+k, 

. respectively 

Fj = net short position for delivery of material input at date t+1 open at time t 

f^. j+h = forward prices of material input at date t for delivery at times t+1 and t+h, 

respectively 

Ij, Ij = beginning inventories of final product and material input, respectively 

'(•)» = storage cost functions of final product and material input, respectively 

= sales of final product 

Pj = price of final product 

Qj = production of final good 

q(-) = production function 

Qj = use of material input 

= one plus one-period interest rate 

Sj = purchases of material input 

Sj = price of material input 

UjO) = utility function 

Vj = vector of nonmaterial inputs 

Vj = vector of nonmaterial input prices 

Wj = monetary wealth at end of trading date t 

$ = fixed input-output coefficient, 0 >0 

T|j, T|j = Lagrangian multipliers corresponding to inventories of final product and material 

input, respectively 
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X = Arrow-Pratt coefficient of absolute risk aversion, X, > 0 

Tij = cash flow 

EjO) = expectation operator based on the information available at date t 

£{ = Lagrangian function 

Cov(x, y) = covariance between x and y 

exp(x) = base of natural logarithms raised to the power x 

ln(x) = natural logarithm of x 

lag(xt) = xt.i 

max(0 = maximum of (•) 

min(-) = minimum of (•) 

Var(x) = variance of x 
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CHAPTER I. INTRODUCTION 

The theory of the competitive firm under conditions of uncertainty has been developed 

under the assumptions that the firm maximizes the expected utility of terminal profits, or 

wealth, and that the firm is myopic. A myopic firm can be defined as one whose planning 

horizon is the same as its decision horizon, which is equal to one period. ̂ The work that has 

been done in this field is extensive, but the basic setting used for most studies is the model 

advanced by Sandmo (1971). 

Imposing the myopic constraint greatly simplifies the analysis, but at the cost of 

severely restricting the firm's behavior. A myopic firm behaves as if it intends to exit the 

market immediately after finishing the current production cycle. A firm that plans to remain in 

business may respond to risk differently than an otherwise identical myopic firm. One reason 

for the differing responses is the commonly observed positive correlation between output and 

input prices. This correlation may result in current production serving as a hedge for 

subsequent input purchases, which in turn means that expectations about future production 

(which depends on future input purchases) may affect current production even if everything 

else remains unchanged. This effect of expectations about events occurring after the current 

production cycle cannot be analyzed with a myopic model, because this model implicitly 

assumes that future output is zero. 

Comparatively few studies have relaxed the myopic restriction to allow the fimi to be 

forward-looking, or nonmyopic. A forward-looking firm is one whose planning horizon 

1 According to Merton (1982, p. 656), the planning horizon "is the maximum length of 
time for which the investor gives any weight in his utility function," and the decision horizon is 
"the length of time between which the investor makes successive decisions, and it is the 
minimum time between which he would take any action." 
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comprises at least two decision horizons. Where nonmyopic behavior has been studied, the 

analyses generally restrict utility to be intertemporally additive and prices to be independently 

distributed from one period to the next (Newbery and Stiglitz 1981, Hey 1987). These are 

strong assumptions: intertemporal additivity means perfect substitutability among single-period 

utilities, and price independence is not supported by empirical research. Studies on the 

forward-looking firm employing different assumptions include Zabel (1971), Anderson and 

Danthine (1983), Chavas (1988), and Chavas, Kristjanson, and Matlon (1991). Zabel 

postulated a constant absolute risk-averse (CARA) intertemporal utility function but constrained 

prices to be independent from period to period. Chavas used the mean-variance framework to 

analyze speculative storage, but the truncated shape of the storage function raises doubts about 

the validity of employing the mean-variance model in such a case. 

The goal of this dissertation is to derive results highlighting the shortcomings of the 

myopic model vis-a-vis the forward-looking paradigm. We provide intuitive explanations for 

the results obtained and test some of the theoretical hypotheses advanced by applying them to 

the U.S. soybean-processing industry. The study proceeds as follows: first, we introduce tlie 

basic theoretical model by postulating and examining optimal decisions for a firm whose only 

activity is speculative storage. We subseqiientiy modify the basic model to study a firm that 

produces and does not store. In Chapter III, we further develop each case to allow for forward 

trading. Then, in Chapter IV, we present the most general scenario in which the competitive 

firm produces and holds input and output inventories and also trades in input and output 

forward markets. Also in Chapter IV, we perform an empirical test of some of the theoretical 

hypotheses that emerge from the most general model using data from the U.S. soybean-

processing industry. Finally, in Chapter V, we summarize the major results of the study. 
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Literature Review^ 

The seminal study in the theory of tlie firm under uncertainty was done by Sandmo 

(1971). The basic assumptions of his model are that the firm is myopic and that production is 

nonstochastic. His main finding was that the risk-averse firm will produce at a point at which 

the expected output price exceeds marginal cost, which means that production under price 

uncertainty will be lower compared with that under certainty, given the same expected price in 

both situations. Also, the risk-averse firm will produce a finite amount even if the marginal 

cost of production is constant, and a higher fixed cost will lead to lower production if the 

firm's utility function is decreasing absolute risk averse (DARA). Ishii (1977) showed that, in 

Sandmo's framework, a marginal increase in price uncertainty leads unambiguously to lower 

production if the firm's attitude is either DARA or CARA. 

The hypotheses resulting from the works of Sandmo and Ishii led many to include 

uncertainty in the empirical estimation of supply curves and to try to quantify its impact. 

Examples include Just (1974); Lin (1977); Brorsen, Chavas, and Grant (1987); Anderson and 

Garcia (1989); and Chavas and Holt (1990). These studies generally resort to different kinds 

of ad hoc indexes of "riskiness" to build uncertainty into the models, some of which were 

compared in Traill (1978). Recently, Aradhyula and Holt (1989) employed the theoretically 

appealing G ARCH time-series process to estimate expectations of means and variances of 

random variables in a model of the U.S. broiler market addressing both risk and rational 

expectations. 

Dan thine (1978); Holthausen (1979); and Feder, Just, and Schmitz (1980) further 

refined Sandmo's model by introducing a forward market for output. They proved that the 

competitive risk-averse firm that is able to trade forward separates production from hedging 

^This literature review is not exhaustive. The three results chapters (II, III, and IV) are 
self-contained papers that cite more specific references to previous works. 
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decisions if production is nonstocliastic. Such a firm will produce as if output price were 

certain and equal to the forward price. Moreover, they showed that if the forward price is 

unbiased it is optimal to place a full hedge (i.e., to short hedge the entire output). Otherwise, it 

is optimal to short hedge more (less) than total production when the forward price is greater 

than (less than) the expected cash price. 

Among the extensions to the pioneering work by Danthine; Holthausen; and Feder, 

Just, and Schmitz are analyses of production risk (Chavas and Pope 1982, Losq 1982, Honda 

1983, Grant 1985), basis risk (Batlin 1983; Benninga, Eldor, and Zilcha 1984; Paroush and 

Wolf 1989), hedging costs (Chavas and Pope), hedging restrictions (Antonovitz and Roe 

1986, Antonovitz and Nelson 1988), imperfect markets (Katz 1984), and option trading 

(Hanson 1988; Lapan, Moschini, and Hanson 1991; Hanson and Ladd 1991). 

An interesting theoretical development is introduced in the paper by Brorsen et al. 

(1985), which focuses on marketing firms. Assuming that the marketing firm is in a 

competitive and/or contestable market, has either a DARA or CARA utility function, and has a 

Leontief nonstochastic production function, increasing output price risk should cause a higher 

expected marketing margin. Tlie authors tested this hypothesis with data from the U.S. wheat-

milling industry and found that it could not be rejected. 

A shortcoming of the work by Brorsen et al. is that it does not take futures markets into 

account; hedging should be relevant because it allows the firm to reduce price risk as long as 

the basis is less volatile than the output price. Lence, Hayes, and Meyers (1992) adapted the 

models by Brorsen at al. and Benninga, Eldor, and Zilcha to address the problem of the 

marketing firm under uncertainty and in the presence of futures markets. Lence, Hayes, and 

Meyers tested their model with data from tlie U.S. soybean-processing industry and obtained 

encouraging results when compared to more traditional approaches. But Lence, Hayes, and 

Meyers were concerned only with processing because they used annual data, and they 



www.manaraa.com

5 

overlooked the fact that material input purchases and output sales may vary considerably from 

month to month within the same crop year. 

There is also an important body of literature devoted to the analysis of input demand 

under uncertainty and in which it is assumed that the firm is myopic. Batra and Ullah (1974) 

pioneered this field, finding that changes in input prices may have a different impact under 

output price uncertainty than under certainty. Although some of their conclusions were faulty, 

as noted and corrected by Hartman (1975), their main results were correct: under output price 

uncertainty the production function must be well-behaved to obtain the standard certainty result 

that an increase in the price of an input unambiguously reduces its use. In addition, the impact 

of such a price rise on the demand for the other input cannot be predicted. 

Stewart (1978) considered the case of a firm that combines an input with known price 

with another input whose price is random to produce a given quantity of output. He 

demonstrated that, if inputs are substitutes for each other, the risk-averse firm will use more of 

the input with known price and less of the risky input when compared to a risk-neutral firm. 

Therefore, the risk-averse firm will not produce at the input-usage ratio that minimizes expected 

cost Moreover, if factor-price uncertainty increases, the risk-averse firm will use less of the 

risky input, leading to higher expected production costs. These results generalize to the 

situation in which there are multiple inputs and/or output price is random. 

Perrakis (1980) made some amendments to Stewart's model. He showed that 

randomness in the prices of some inputs at the time when the level of other inputs must be 

chosen affects the proportion of inputs selected by the firm under any kind of risk attitude. In 

the most likely situation, even a risk-neutral finn will use a higher proportion of the riskless 

input compared to a situation in which the prices of the risky inputs are nonrandom and equal 

to their expectations. 
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Zabel (1971) pioneered the study of forward-looking behavior under risk aversion, 

allowing also for inventories of final product. Zabel postulated a CARA intertemporal utility 

function to characterize the preferences of the competitive firm. In the Zabel model, the firm 

produces a single product and in each period must decide how much to produce before the 

price is revealed and how much to sell after learning the price. The subjective density function 

of prices is identical and independent for each period, and the cost of production is assumed 

constant for the entire horizon. Zabel found that an increase in beginning inventories leads to a 

one-on-one increase in sales and to a decrease in production no larger than the increase in 

inventories. A bigger coefficient of absolute risk aversion translates unambiguously into lower 

production and higher sales; an increase in current price results in unchanged production and 

higher sales; and a decrease in the discount factor leads to higher production, but its effect on 

sales is ambiguous. 

Chavas (1988) employed the mean-variance paradigm to study competitive speculation 

assuming a forward-looking decision maker. He demonstrated that the marginal risk premium 

may be either positive or negative depending on the expected change in future asset holding. 

An issue with Chavas's model, however, is that future asset holding is random and follows a 

truncated distribution. Because of this, assuming CARA utility and normally distributed prices 

does not lead to the mean-variance model, which may invalidate the conclusions. 

Hey (1987) built a dynamic model of the competitive firm with a forward market for tlie 

final good. In that theoretical paper. Hey assumed a risk-averse firm with an additive 

intertemporal utility function. He also restricted output cash prices to be identically and 

independentiy distributed from date to date. The firm is allowed to hold inventories of final 

product and also to trade in a forward market for final product. With this setting, Hey proved 

that the firm separates production from hedging and showed that the finn produces as if the 

cash price were known and equal to the forward price. He also found that fully hedging total 
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production is suboptimal when forward prices are unbiased. In addition to adopting the 

restrictive assumptions of additive utility and identically independent distributed cash prices, 

Key's results depend crucially upon the sequential occurrence of the production, hedging, and 

sales decisions. In his model, the firm chooses optimal sales after having chosen production 

and hedging, rather than simultaneously. 

A different approach to nonmyopic behavior in the presence of futures markets was 

undertaken by Anderson and Danthine (1983). They developed a model in which the firm 

revises its hedging decision between the dates at which its physical (i.e., cash) positions are 

open and closed. Anderson and Danthine found that separation between production and 

hedging holds, but that the full hedge is generally suboptimal if the futures/forward price is 

unbiased. However, they assumed a single production cycle, which can be very restrictive for 

some firms. 

In summary, most of the work on the theory of the finn under uncertainty has assumed 

that the firm behaves myopically. Where this assumption has been relaxed, most models have 

either imposed severe constraints (i.e., additive intertemporal utility, independently distributed 

prices, or sequential production and selling decisions) or have not been directly concerned with 

the comparative analysis of forward-looking and myopic firms. That comparative analysis is 

the focus of this study. 
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CHAPTER II. COMPETITIVE FIRMS IN THE ABSENCE OF FORWARD MARKETS 

Few studies have relaxed Sandmo's implicit assumption tliat the risk-averse finn plans 

to quit production at the end of the current period. There is at least one reason to expect this 

assumption to matter. Consider an industry for which input and output prices are positively 

correlated and firms remain in production for several production cycles. Here, a firm's end-of-

period cash flow includes the costs required to initiate production in the subsequent period. 

The positive effect of high output prices may be offset by higher input prices. In addition, 

having output to sell, even if produced at a loss, can act as a hedge against input prices. Firms 

operating in this environment will be concerned about revenue and cost risks at several points 

in time and may choose to offset risk in one period against risk in another and will diversify 

risk across time. 

In this chapter we present a model of a risk-averse expected-utility-maximizing firm that 

is concerned about revenue and cost risks in future production periods and we use it to derive 

propositions that add to the richness of Sandmo's model. 

Existing nonmyopic models have generally restricted utility to be intertemporally 

additive and prices to be independently distributed across time (Newbery and Stiglitz 1981, 

Hey 1987). These are strong assumptions because intertemporal additivity implies perfect 

substitution among single-period utilities, and price independence is not supported by empirical 

research. Other work exists upon which we can build. Zabel (1971) uses a CARA 

intertemporal utility function but assumes intertemporal price independence. Chavas (1988) 

presents a forward-looking mean-variance model of speculative storage. However, using the 

mean-variance paradigm in this setting is hard to justify because the random storage function 

has a truncated distribution. 
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In the next section, we introduce a forward-looking firm whose only productive activity 

is speculative storage (or asset holding). For this case, the correlation between input and 

output prices is most obvious and leads to a straightforward analysis of the firm's behavior. 

We also show that Sandmo-type behavior is nested within the more general model by 

restricting the firm to be myopic. Then, we allow the firm to be involved in a more standard 

productive activity and derive some propositions. The results for this more general case are 

derived at the cost of some additional assumptions about the technology set. 

A Speculative Storing Firm 

Consider a competitive firm with a twice continuously differentiable von Neumann-

Morgenstem utility function, and assume that utility is strictly concave in its argument terminal 

wealth [U(Wj), U'CWj) > 0, U"(Wf) < 0].3 Terminal wealth is 

(2.1) W'p = r.i rgrj ... r^.^ W.j +rori ... r^.j n:Q ... r^.j tcj 

+  . . .  +  r -p .2  T ty .2  +  Tty  

where Wj denotes monetary wealtli at end of trading date t, tIj is cash flow at time t, and r^ 

equals one plus the one-period interest rate prevailing at t. Interest rate need not be constant 

over time, but it is restricted to be nonrandom. At each trading date 0 < t < T the firm can 

borrow and lend unlimited amounts of money for one period at the prevailing interest rate. 

^As noted by Katz (1983), the proper argument of utility is wealth and not profits, 
although the latter approach has been widely (and incorrectly) used. 
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It will become clear later that input price randomness plays a key role in tiie forward-

looking scenario, so that we want to account for it explicitly. But allowing for input price 

randomness would render the model intractable, as suggested by the related literature (Batra 

and Ullah 1974, Hartman 1975 and 1976, Ratti and Ullah 1976, Wright 1984, Stewart 1978, 

Perrakis 1980). The easiest way to tackle this problem is to postulate a speculative firm whose 

only activity is storing a certain product to profit from its resale, in which case the relevant cash 

flow at any date t^Tis represented by: 

(2.2) Jtj = P{ Pj - i(If - Pj) s.t. Ij = If.j - Pj.J > 0 

where Pj represents product sales at date t, /(•) is a convex storage cost function such that 

/'(•) > 0,4 and Ij is beginning inventory at date t. Positive sales means that the firm sells from 

beginning stocks, whereas negative sales means that the firm buys to store and sell at a later 

date. Sales cannot exceed beginning inventory (i.e., Pj < Ij). The amount (1^ - P[) is the 

unsold beginning inventory at date t, which is carried over at nonrandom storage cost /(I^ - P^) 

to become beginning inventory at time t+1 (Ij+i). This kind of cash flow reduces the problem 

to its essentials and is generalized later. 

Assume that at any moment t the firm chooses current product sales (P^) to maximize 

expected utility of terminal wealth given available information (e^). In addition, costless 

information becomes available between trading dates. Therefore, optimal sales level at current 

date t = 0 is obtained by solving the dynamic programming problem 

'^For a risk-averse firm, /"(•) = 0 yields a bounded solution. This is important because 
/"(•) = 0 is a quite common situation in the real world (for example, gold and common stock 
are most likely carried over at constant marginal storage cost). In contrast, for a risk-neutral 
firm we need /"(•) > 0 for the solution to be bounded. 
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(2.3) Mj(W'j', Cj) = maxp^<j^£[(Wy)l Cj 

where! £j'(Wf) = U(W'p) + Tj-p (ly - S-p) 

^((W'p) = / Mj+i(W'p, et+i)/?t+i(Pt4.il PQ,.... Pt) d^i+\ + Tit 0^t<T 
Pt+1 

£{ is the Lagrangian function of the optimization problem, Cj. is a vector containing all relevant 

predetermined and exogenous variables at date t, T|^ is the Lagrangian multiplier,I pg, 

..., P() is the conditional density function of p^+j given (pg,..., pj), and terminal wealth and 

cash flows are given by (2.1) and (2.2), respectively. 

The first-order conditions (FOCs) corresponding to the terminal date T are 

(2.4) -— = (p-p + /') M-p' - Tiy = 0 
oP-p 

B f ' p  d £ r r  
(2.5) —— = I-p - P-p = 0, Tij > 0, Tj-p -— = 0 

^ri-p 

The first term of the derivative of the Lagrangian function with respect to sales is positive, 

hence the Lagrangian multiplier (Tiy) is also positive to satisfy (2.4). Because Tiy = 0, 
5tit 

must equal zero to avoid violating the Kuhn-Tucker condition (2.5), so that the optimal sales 

policy at the terminal date is to sell all beginning inventories (e.g., Pj = ly). Therefore, 

optimal cash flow at the terminal date reduces to Tt-p = pj I-p, and maximum attainable utility is 

(2.6) M'p(W'p, ep) = U(r'p_2 W^p.j + p-p ly) 
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For all dates prior to the terminal date (0 < t < T), the FOCs are^ 

a£t 
(2.7) — ... r-i-.i [r^ (Pt +1") M^' - E^(p^+i Mj+j')] - T|t = 0 

dFj  

9£j. 3£t 
(2.8) =It-Pt>0.TIT>0 ,TIT ^  =0 

arit 

where E^O) denotes the expectation operator based upon the information available at t. The 

solution to FOCs (2.7) and (2.8) is a unique absolute constrained maximum because tlie 

objective function is strictly concave, and the constraint set is convex.^ Expression (2.6) 

together with FOCs (2.7) and (2.8) gives us the framework needed to analyze the behavior of 

the nonmyopic risk-averse firm. 

A myopic firm is one whose planning and decision horizons are identical, whereas a 

forward-looking firm is defined by a planning horizon that consists of at least two decision 

horizons. The definition of myopic firm leaves two possibilities: the firm is either at terminal 

date T, or at time T-1. But at T tiie firm faces no risk, and therefore by myopic behavior under 

uncertainty we mean the behavior of the firm at date T-1. Similarly, a forward-looking (or 

nonmyopic) firm is one optimizing at any date before T-1. 

Because we will compare the risk-averse firm with an otherwise identical risk-neutral 

firm, we need to know the optimal behavior of the latter. It is straightforward to show that the 

risk-neutral FOCs for any date preceding the terminal time T are^ 

^See Appendix A for the derivation of (2.7). 

^We will assume for the remainder of the analysis that the solution to (2.3) exists. The 
conditions for this are given in Bertsekas (1976, p. 375). 

^Expression (2.9) is derived in Appendix A. 
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atf 
(^ 9) T— = ••• TT-I [ft (Pt •*" ' ) " " lit ~ 0 

df t  

3£t 3£f 
(2.10) —— = L - Pf ^ 0, Tij ^ 0, T]^ —— =0 

dTlt 9tlt 

and that optimal sales policy at T is given by Py = ly (see Appendix A). It follows 

immediately from FOCs (2.9) and (2.10) that in the risk-neutral context optimal myopic and 

forward-looking sales are identical, so that we will not distinguish between myopic and 

nonmyopic risk neutrality. 

We can obtain comparative statics corresponding to the risk-averse firm by total 

differentiation of FOCs (2.7) and (2.8). The myopic and forward-looking responses of sales 

and storage to current price, beginning inventories, the degree of absolute risk aversion, the 

interest rate, and parameters of the distribution of next-date price are summarized in 

Propositions 2.1 and 2.2, respectively. Note that we use the acronym lARA to denote 

increasing absolute risk aversion. 

Proposition 2.1: Mvopic storage and sales behavior For any positive amount 

stored, a myopic risk-averse firm behaves as follows: 

a) Sales: 

SPQ-y.^ r>  0  i f  CAR A;  o r  DARA and  Pq  <  0 ;  o r  lARA and  Pg > 0  

9pO 1^ 0 if DARA and PQ > 0 ;  o r  lARA and  Pg < 0  

9PQ_y_2 f> 0 if  CARA; or  DARA and pg PQ ^ or lARA and PQ PQ >  /  

3ro 0 if DARA and PQ PQ > /; or lARA and pg PQ < ' 

aiQ l> 1 if lARA 
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3P0=T-1 

3R);1 

9Po=T-1 

r<Oi f  

7=1 0 i 

<  0  i f  DARA or  CARA 

f  lARA 

30%! 

5PO=T-1 

dX 

> 0  i f  DARA or  CARA 

a=l  0  i f  lARA 

> 0  

b) Storage: 

aii_. 1=T 

3po 

3Ii=T 

aro 

aio 

aii=T 

3R);1 

aii^T 

r<  0  i f  CARA;  o r  DARA and  Pq  ^  0 ;  o r  lARA and  Pg > 0  

0  i f  DARA and  PQ > 0 ;  o r  lARA and  PQ < 0  

f<  0  i f  CARA;  o r  DARA and  pg  PQ ^  or  lARA and  pg  PQ 

0  i f  DARA and  pg PQ > A o r  lARA and  pg Pg < /  

f>  0  i f  DARA 
=  0  i f  CARA 

l<  0  i f  lARA 

>  0  i f  DARA or  CARA 

a= l  0  i f  lARA 

.3(^0; I 

9X, 

f < O i f  E  

a=l 1^ 0 if 

<  0  i f  DARA or  CARA 

lARA 

< 0  

where: p^ = Cgj pj + (1 - Ogj) pg Cgj = constant, Hgj = Eg(pi) 

X = Arrow-Pratt coefficient of absolute risk aversion (k = - M 

Proof: See Appendix A. 
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Proposition 2.2: Forward-looking storaee and sales behavior For any positive 

amount stored, the sales and storage responses of a forward-looking risk-averse firm to 

changes in current price, interest rate, beginning inventories, expected next-date price, mean-

preserving price spread, and degree of absolute risk aversion are ambiguous in general. But if 

the firm is CARA, behavior is as follows: 

a) Sales: 

3PO<T-1 ^^0<T-1 ^^0<T-1 

b) Storage: 

apo arg aiQ 

Proof: See Appendix A. 

By noting that storage (Ij) is the "productive" activity of the speculative firm, we see 

that Proposition 2.1 is a restatement of the findings of the standard literature on the firm under 

uncertainty for the case of speculative storage. If the myopic firm is DARA or CARA, storage 

increases with higher expected price or lower Rothschild-Stiglitz mean-preserving price spread. 

Also, myopic storage is negatively related to the firm's degree of absolute risk aversion. 

From Proposition 2.1, beginning stocks have a positive (negative) effect on storage if 

the firm is DARA (lARA). This result is to be expected: a ceteris paribus increase in beginning 

stocks makes the firm wealthier and therefore less absolute risk averse if DARA. But we know 

that storage is negatively associated to the degree of absolute risk aversion, so that storage 

grows when beginning stocks increase for a DARA firm. 
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The ambiguous response to current price in Proposition 2.1 may seem counterintuitive. 

One would expect current price to affect storage negatively because current price may be 

considered an input price for storage. But a current price change also causes a wealth change, 

and consequently a change in the degree of absolute risk aversion unless the firm is CARA. 

For the CARA firm the degree of absolute risk aversion does not depend on current price, and 

the storage response to current price is unambiguously negative. Also, the DARA firm that 

buys good to store (i.e., Pg < 0) reduces storage as current price increases. Otherwise, DARA 

storage bears an ambiguous relationship with current price. A similar explanation can be given 

to the counterintuitive result regarding the interest rate in Proposition 2.1. 

When the firm is CARA the degree of absolute risk aversion is unaffected by a change 

in a particular exogenous variable. Therefore, the CARA firm's response does not include the 

indirect effect due to the exogenous variable impact on the degree of absolute risk aversion. 

For non-CARA firms this indirect effect may be of opposite direction and sufficiently large so 

as to outweigh the exogenous variable direct effect, which is the reason for the ambiguities that 

arise from DARA or lARA attitudes in Proposition 2.1. Because of these ambiguities, non-

CARA forward-looking behavior cannot be characterized without imposing more restrictions 

(see Proposition 2.2). 

If we constrain the nonmyopic firm to be CARA, we obtain unambiguous responses to 

current price, interest rate, and beginning inventory. Moreover, these responses are 

qualitatively the same as for the myopic CARA firm. But the effect of next-date expected price, 

next-date Rothschild-Stiglitz mean-preserving price spread, and the coefficient of absolute risk 

aversion on forward-looking sales and storage are ambiguous even for CARA. This result is 

counterintuitive and stands in contrast with what was found for the myopic case. This finding 

merits a more careful analysis because it challenges some of the main conclusions of the 

standard theory of the competitive firm under uncertainty. But we can show that it is a 
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plausible characterization of real-world finn behavior. To explain this result, it is helpful to 

rewrite FOC (2.7) in terms of the covariance.^ If the firm stores something at the present date 

(e.g., Ij = Iq - Pq > 0), the Lagrangian multiplier must equal zero (Tig = 0) and we can express 

(2.7) as 

Gov (pi; Ml') 
(2.11) Eo(Pi)+ =ro[po + /'(Ii)] 

On the other hand, if the firm stores nothing (Ij = Ig - PQ = 0) the Lagrangian multiplier is 

positive (tiq > 0), and instead of (2.11) we have 

Cov(pi; Ml') 
(2.12) Eo(Pi) + < rg [po + i'm 

But MQ ' is positive everywhere, and we can infer the sign of Cov(p J ,  M^') in expressions 

(2.11) and (2.12) by examining the response of Mj' to changes in pj, i.e., 

aMi '  aMi '  ap i  
(2.13) —— = Ti ...rT_iIiMi"-ri ...r-p.i l2Mi" + -— 

dp i  dP^  dp i  

ap2(p2' Pn, Pi) 
+ maxp <j [ J M2' r c?P2] + •• •  +  {  J  maxp^<j - [  J  . . .  

^ ^ P2 ^Pl 1 ip2 P3 

I , Mr' "T- ' )  W 
pt-1 pt "Pi 

PT-1(PT-1' PO' •••'PT-2) ^PT-l] ••• P2(P2^ PO' Pi) ^P2' 

^Recall that for any pair of random variables x and y: E(x y) = E(x) E(y) + Cov(x, y). 
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The term (rj ... rj.j Ij Mj") reflects the impact of current storage, and is nonpositive. The 

term (- rj ... ry.j I2 Mj") is due to the effect of next-date storage, and is nonnegative. The 

third term in the right-hand side of (2.13) captures the impact of changes in absolute risk 

aversion, and vanishes for a CARA decision maker. Finally, the terms maxpj<jj(0 represent 

the effect of next-date price attributable to its relationship with posterior prices. 

Expressions (2.9) through (2.13) give us the elements to derive our second set of 

results, which are summarized in Propositions 2.3 and 2.4, and their respective Corollaries. 

Proposition 2.3: Mvopic reservation price for storage The reservation price 

aix)ve which a myopic risk-averse firm does not store is equal to the risk-neutral reservation 

price. A myopic risk-averse firm will store at a level where discounted expected next-date price 

is higher than current price plus marginal storage cost 

Proof. The risk-neutral reservation price is p^y = lBo(pi)/ro - /'(O); the proof is trivial from 

FOCs (2.9) and (2.10). 

For a myopic firm I2 = ly+j = 0, and the right-hand side of (2.13) reduces to ly My". 

Therefore, 

(2.14) Cov(pT.Mf) 
[< 0 if IT > 0 
= 0 if ly = 0 

because p j is monotonically increasing in py, and My' is monotonically nonincreasing in py.^ 

Applying expression (2.14) to (2.11) and (2.12) we get 

^This result is obtained by employing Theorem 43 in Hardy, Littlewood, and Polya 
(1967). 
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r> r?-! [PT-1 ' (ly)] if IT ^ ® 
(2.15) Et.i(Pt) |< [py_^ + ("(1^)] if IT = 0 

Hence, the myopic risk-averse reservation price is Po=T-1 ~ ^ ~ Po<T' Q-^-I^-

Corollarv to Proposition 2.3 The myopic risk-averse firm stores less than the 

risk-neutral firm. 

Proposition 2.4: Forward-looking reservation price for storage (1) The 

reservation price above which a forward-looking risk-averse firm does not store is generally 

different from the risk-neutral or the myopic risk-averse reservation price. Moreover, this finn 

does not necessarily store an amount at which discounted expected next-date price is higher 

than current price plus marginal storage cost. 

(2) If the firm is CARA and (a) next-date price is independently distributed from all 

posterior prices, or (b) the decision maker is sufficiently absolute risk-averse, or (c) price 

follows a stationary autoregressive process and the decision maker is sufficiently forward-

looking, then the forward-looking reservation price is higher than the risk-neutral or the 

myopic risk-averse reservation price. 

Proof. For a nonmyopic firm the terms niaxpj<j^(-) in expression (2.13) have ambiguous 

signs, even if Ij = 0. Therefore, Cov(p2, M^') ^ 0, and EQ(P2) ̂  rg [pg + /'(I^)] for Ij ^ 0. 

In particular, the forward-looking risk-averse reservation price Po<t-1 such tliat 

P0<T-1 ^ %(Pl)/^0 • ' = Po=T-l ~ P0<T-

By FOC, aMi'/aPj = aMi/aPj = O if the firm is CARA. 

The result under assumption (a) follows immediately because expression (2.13) 

simplifies to (- rj ... ry.^ I2 Mj") > 0 if next-date price is independent from all posterior 
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prices. Therefore, CovCpj, Mj') > 0 unless IEQ(I2) = 0, and the forward-looking CARA 

CARA. u .1 » CARA „ . ., ra rn 
reservation pnce PO<T-1 such that PO<T-1 > I^oCPlV^O - ' (0) = Po=T-l ~ Po<T* 

To show the finding under hypothesis (b), let X = and re-express (2.13) to get 

(2.16) ^ =. ri ... Dr.i l2 Ml" - maxp a [ j ^ ^''2(P2l PQ. Pi) 
dpi 1 ip2 X opi 

/  m a x p , . , J  ̂  
PT-1 ^ ^ ^ ^ Pr ^ ^Pi 

PT-I(PT-1' PQ' •••' PT-2) ^PT-1] ••• P2(P2' PO'Pl) ^P2} 

Unless EQ(I2) = 0, we can obtain Cov(pj, M^') >0 by setting A, large enough, because 

aMi' 
(2.17) lim;^^^^=-ri...rT.il2Mi">0 

dpi 

The result under assumption (c) can be proven similarly. The relationship between 

next-date price and prices close to the tenninal date tends to vanish as tiie planning horizon 

lengthens, i.e., dp^/dpi = 0 for (t-1) sufficiently large. Therefore, for sufficiently forward-

looking behavior the first term in (2.16) outweighs the terms maxp^^^( ), thus yielding 

Cov(pi,Mi')>0. Q.E.D. 

Corollary to Proposition 2.4 If conditions (a), (b), or (c) in Proposition 2.4 are 

met, there exists a range of current prices over which the forward-looking CARA finn stores 

more than the risk-neutral one. 
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Proposition 2.3 and its Corollary extend well known results from tlie theory of the finn 

under uncertainty to the myopic speculative storage scenario. Proposition 2.4 and its Corollary 

contain some of the key findings of this chapter and provide the intuition for the seemingly 

paradoxical results of Proposition 2.2. Comparison of Propositions 2.3 and 2,4 (and their 

respective Corollaries) reveals that relaxing the myopic assumption yields nontrivial differences 

in speculative storing behavior. 

It is important to stress that in the forward-looking scenario we cannot use normally 

distributed prices to justify mean-variance analysis because terminal beginning inventory is 

random but it is not normally distributed. From Proposition 2.3, it follows that Ij = 0 when 

current price is above the myopic reservation price [i.e., when py.j > E'j'.2(P7)/rj.j - /'(O)]. 

This creates a truncation point in the density function of terminal wealth. 

In Figures 2.1 and 2.2 we illustrate the most important findings reported in 

Propositions 2.1 through 2.4. Figure 2.1 is drawn in storage-current price space, whereas 

Figure 2.2 is done in sales-current price space. In each Figure we depict tiie curves "myopic 

CARA," "forward-looking CARÀ," and "risk-neutral" to represent the hypothetical behavior of 

three firms assumed identical except for their planning horizons and risk attitudes. The slope 

of the storage curves for the CARA firms is negative (see Propositions 2.1 and 2.2). Also, the 

CARA storage curves are steeper than the risk-neutral one, as inferred from the equations 

giving the storage response to current price (see Appendix A), i.e.. 

(2.18) 

3-CARA 
°Io<T 

9P0 
^^ <1 = 

/•" - TQ ... TT.I IEo{[(Po +- Pl/fQ^ M2"}/MQ '  •  

rn 
°^0<T 

3P0 

f .CARA .rn 
for Io<T - Io<T 
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Current price (pg) 

CARA 
p0<T-1 

[Eo(pi)/ro-/'(0)] 

forward-looking CARA 

myopic CARA 
risk-neutral 

Figure 2.1. 

0 Storage (Ij) 

Storage behavior of risk-neutral, myopic CARA, and nonmyopic CARA firms 
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Current price (pg) 

CARA 
P0<T-1 

forward-looking CARA' 

[Eo(pi)/ro - /"(O)] 

risk-neutral,..^^^'*''^^ .—myopic CARA 

0 IQ Sales (PQ) 

Figure 2.2. Sales behavior of risk-neutral, myopic CARA, and nonmyopic CARA firms 
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where Ixl represents the absolute value of x, and the superscripts "CARA" and "rn" stand for 

CARA and risk-neutral firms, respectively. 

As stated in Proposition 2.3, the risk-neutral and myopic CARA reservation prices are 

identical in Figures 2.1 and 2.2. Also, risk-neutral storage is always above myopic storage. 

Figures 2.1 and 2.2 represent the case in which conditions (a), (b), or (c) of Proposition 2.4 

are met, so that the forward-looking CARA reservation price is above the risk-neutral one. 

Because storage curves are negatively sloped, the nonmyopic CARA firm stores more than a 

risk-neutral one when current price is between the risk-neutral and the forward-looking 

. . /. .CARA _ .rn „CARA rn . .. 
reservation pnces (i.e., lQ^y_ J >lo<T~® P0<T-1 > PQ > Po<T)' Moreover, if storage 

cost is a strictly convex function (as depicted), forward-looking CARA storage will also exceed 

risk-neutral storage for some range of current prices below the risk-neutral reservation price 

.. .CARA _ _m _. . ^ m . 
(I.e., Io<T-L > ̂ 0<T ^ some pg < PO<T)-

When current price is between the forward-looking CARA and the risk-neutral 

reservation prices, we observe a decrease in nonmyopic CARA storage as we reduce the 

coefficient of absolute risk aversion from some positive value to zero (i.e., as firms become 

risk-neutral). This is the reason why forward-looking CARA storage may increase with the 

degree of absolute risk aversion. We can apply a similar reasoning to explain the ambiguous 

effect of next-date expected price and next-date Rothschild-Stiglitz mean-preserving spread on 

forward-looking CARA storage. 

From the proof of Proposition 2.4, it is clear that if current storage is sufficiently high 

we will have Cov(p2, Mj') < 0, because the first term in the right-hand side of (2.13) will 

outweigh the other terms. Therefore, for sufficiently high current storage we will have risk-

neutral storage exceeding forward-looking CARA storage. Also, because of inequality (2.18), 

the forward-looking and risk-neutral curves will intersect at a unique point. These 

observations are depicted in Figure 2.1. 
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We can readily explain tlie apparent irrationality of a nonmyopic CARA firm holding 

inventories where current price is above discounted expected next-date price minus storage 

cost. Let t^, tj, and t2 be three arbitrary successive calendar times, and write the tenninal cash 

flow of dates tg and tj in the following way: 

(2.19) r^Q 7t{Q+ = ifQ [p(Q PjQ - /(I(Q - P(Q)] + [pq Pq - /(If J - Pfj)] 

~ '"tQ fPtQ ^tQ • PtQ ^tj • '^tp] tPti ^ti • Pti ^t2 • 

When the myopic firm is at time tg, its planning horizon ends at next date tj, so that tenninal 

date for the myopic firm standing at tg is T = tj. If it behaves optimally, the myopic firm at 

date T-1 = will plan to sell its entire current storage at date T = t^. Therefore, at time IQ the 

myopic firm cares only about revenue risk at tj (i.e., p^ If p. In contrast, the forward-looking 

firm's planning horizon ends after next date, so that at time tg its terminal date T is greater than 

tj. Because of this, the forward-looking firm generally expects to store something at t^ [i.e., 

EfQ(If^) > 0], in which case it faces cost risk [i.e., Pf ̂  + z(If^)] in addition to revenue risk 

from its activities at t j. But revenue and input cost risks are related to each other and to current 

storage. In particular, current storage increases revenue risk but reduces input cost risk. This 

means that the forward-looking firm may derive utility from holding some inventory even 

when the one-period expected return from storage is negative, because storing reduces its cost 

risk. In a sense, the forward-looking finn diversifies assets intertemporaily. 

Our results are compatible with the findings of the standard theory of the finn under 

uncertainty because the standard results apply when the forward-looking finn stores a 

sufficiently large amount. But our model explains real-world facts that are incompatible with 

the standard model of the finn under uncertainty. For example, firms practice sequential 
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marketing (Hanson, 1988, p. 6), hold output and/or input reserves, and spread transactions 

over time to reduce risk (Robison and Barry, 1987, p. 65). 

The results in this section are quite general in the sense that they apply not only to firms 

speculating with commodity storage, but also to speculative holders of stocks, bonds, and 

other non-transformable assets. 

To illustrate the preceding findings, consider the following example. Assume for 
2 

simplicity that the storage cost function is quadratic and has the form /(I^) = 0, and that 

prices are independently normally distributed: 

(2.20) pt ~ n.i.d. (iXj, 

Under these conditions, optimal storage levels for a risk-neutral, a myopic CARA, and a 

forward-looking CARA firm standing at date T-2 are respectively respectively obtained 

from: 10,11 

T /(^^T-^T-l PT-l)/(2rT.i 0)if|XT>rT-l PT-1 

P T - i  

(2 (HT - r-j-.i PT_i)/(2 ry.i 0 + A, a-p ) if > ry.i Py.i 

0 if |i y < rj . 2 Pt - 1 

l^See Appendix A for the derivations of expressions (2.22) and (2.23). Expression 
(2.21) can be obtained from (2.22) by setting A, = 0. 

11 As we already know, Ij+j = 0 for any rational firm independently of price 
distributions. 
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(2.23) Kq ^ 0, Ii=T.i ̂  0, Ii=T.i = 0 

where: Kg = —j== exp[- 4 (liy/ry.^)^] [1 - (1 + K2) exp(- i K2 zi^)] 
V2 71 

,, 2 „ ,-1/2 , 1 2 ^ 2, 
+ (1 + K2) exp(-2 K2Z1 ) 

2 -1/2 
[|^T/rT-l • (1 + ^T-l ^2) (^T-l ' ̂"7-2 (PT-2 + 20 ^(z^) 

+ [|^T/^T-1 " ^T-1 % ' ̂T-2 (PT-2 + 20 Ii=T-l)] 

2 
ZQ = -(^j.i - HT^T-l ^T-1 ^l=T-l)/^T-l 

zi=(l+<JT.i^/ir2)""^zo 

^2~^T-l V(2Pj".J 0 + A.C'y ) 

F( ) = cumulative distribution function of the standard normal distribution 

We report some a specific numerical solution in Table 2.1. This table gives an example 

of a forward-looking CARA firm that stores more than a risk-neutral one. 

A Model of Production without Storage 

The main results discussed in the preceding section were obtained by assuming the cash 

flow presented in (2.2), and are due to the contemporaneous relationship between revenue and 
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Table 2.1. Example of a forward-looking CARA firm that stores more than a risk-neutral 
firm 

CARA firm'^ Risk-neutral firm'' 

I0=T-1 82 units 238 units 

l0=T-2 547 units 238 units 

Values of parameters and exogenous variables are Ifk = 50000 $, ry. j = t j_2 = 1.05, 

li-p = 110 $/unit, = 100 $/unit, p'p_2 = 95 $/unit, CT'p = 10 $/unit, a-p.j = 11 $/unit, and 

0 = 0,0005 $/unit^. 

^Values of parameters and exogenous variables are X = 0, r^.j = tj_2 = 1 05, 

Hy = 110 $/unit, ll^.i = 100 $/unit, pj.2 = 95 $/unit, Gy = 10 $/unit, = 11 $/unit, and 

0 = 0.0005 $/unit^. 
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input cost at each date. In this section we will show that similar conclusions apply to firms 

characterized by less restrictive cash flows. The complications tliat arise from allowing for 

random input prices in a nonmyopic context are due to the possibilities of stochastic production 

and/or input substitution. Hence, we can apply our basic model to other types of cash flows 

by constraining the production function to be nonstochastic and such that inputs with random 

prices cannot be substituted. 

It is straightforward to extend the analysis performed in the previous section to 

competitive firms whose short-run production function can be represented by a Leontief 

production function such as 

(2.24) qt = min[q^/$,g(vt)] 

where Qj denotes production of final good at date t, Qj > 0, represents material input use, 0 

is a fixed input-output coefficient (0 > 0), Vj is a vector of nonmaterial inputs, and <y( ) is a 

concave production function. Output Q( becomes available only at date t+1; in other words, the 

firm starts production at time t and finishes output at date t+1. 

According to (2.24), adding 0 units of material input increases production by one unit 

over the range in which the vector of nonmaterial inputs does not constrain production. If 

enough units of material input are added the set of nonmaterial inputs eventually becomes 

binding and production cannot increase. The fact that there is no substitutability between 

material input and q{-) does not mean that substitution among the nonmaterial inputs in vector 

Vj is prevented. For example, it may be feasible to substitute capital for labor in wheat milling, 

even though substitability of wheat for either of these two inputs combined or alone is 

negligible for all practical purposes. Note also that material input becomes nonbinding as O 
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tends to zero, resulting in a standard production function g( ). In other words, the standard 

production function is nested in (2.24). 

For our purposes it is essential that the Leontief function (2.24) is nonstochastic and 

that there is no substitution between material and nonmaterial inputs. This allows us to 

examine the situation where material input price is random without the complications due to 

input substitution or stochastic output. Storage, transportation, refining and/or purifying of 

raw materials (e.g., oil, sugar and metals), grain milling (e.g., wheat and rice), oilseed 

crushing, alloy preparation, energy generation, meat packing, and livestock production are 

examples of processes that comply with this Leontief function. In the farm sector, feedlot, hog 

and poultry production are but some of the production processes that can be modeled by this 

function with reasonable accuracy. 

Diewert (1971) has shown that the cost function dual to (2.24) is 

(2.25) C = 0 s^ - c(Q^; v^) 

where C is variable cost, S|. is material input price, c(-) is a convex nonmaterial cost function 

such that c'O) > 0, and Vj is a vector of nonmaterial input prices. We will assume that 

nonmaterial input prices are constant, and we will simply write c(Q^) instead of c(Q[; v^) 

because we will not be concerned with nonmaterial input prices. Assuming that material input 

price is stochastic while nonmaterial input prices are constant is not as unrealistic as it may at 

first appear. This is because in many situations the largest share of variable cost is due to the 

material input. In addition, nonmaterial input prices are generally less volatile, and 

substitability among nonmaterial inputs should cause variable cost changes far less pronounced 

than those due to material input price changes. Therefore, the cash flow corresponding to a 

nonstoring firm with the Leontief production function (2.24) can be represented by 
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(2.26) Jtt = PtQt.i-<I>StQt-c(Qt) s.t. Qt>0 

Comparing (2.26) with (2.2) reveals that the latter is a special case of the former, in which 

= 1, Sj = pj, and 

With random final product and material input prices, the solution to the optimization 

problem for this firm is given by 12 

(2.27) Mj(Wi', Cf) = maxQ^>o£t(Wy)l 

where: EyCWy) = U(W'p) 

£^(W'P)= / J ^T+L(^T' ^T+L) 
Pt+1 ®t+l 

5t+l(Pt+l' St+l' PO' SQ. •••' Pf St) ^h+l ^Pt+1' 0 ^ t <T 

The cash flows in expression (2.27) are as shown in (2.26), and 5t+l(Pt+l' ®t+l' PO' ®0' •••' 

PJ, S() is the conditional density function of s^+J and p^+j given (pQ, SQ, p^, s^). It is clear 

that optimal production at terminal date T is zero (Qp = 0), and that the Kuhn-Tucker condition 

corresponding to any previous date is 

it will become more clear in Chapter IV, this firm at date t must decide how much 
to sell from what produced at the preceding date (Qt-i). how much to produce for sale at next 

date (Qf), and how much material input to use (Q^). But the finn will always sell all beginning 

stocks as long as current output price is positive and it cannot store, and optimal material input 
g 

use is given by Qj = Qj. Hence, the decision variable set reduces to only Q[. 
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3£t 3£f 
(2.28) —— = r^+2 ... r-p.J ^t+1 ) " ^^ Qt - Qt ~ ® 

oQj oQf 

With this basic setting we are in conditions of deriving a set of results analogous to 

Propositions 2.3 and 2.4 for the productive firm, namely, Propositions 2.5 and 2.6. Note that 

in Proposition 2.6 we use the following expressions regarding the relationship between output 

and material input prices: 

(2.29) Sj = apf + Ut 

(2.30) St = p(pt)^wt 

where a, P, and y are positive constants, U[ is a random variable independent from P[, and W( 

is a positive random variable independent from p^. 

Proposition 2.5: Mvopic reservation price for production The reservation price 

above which a myopic risk-averse firm does not produce is equal to the risk-neutral reservation 

price. A myopic risk-averse firm will produce at a level where discounted expected next-date 

output price is higher than weighted current material input price plus marginal production cost. 

Proof. See Appendix A. 

Corollarv to Proposition 2.5 The myopic risk-averse firm produces less than the 

risk-neutral firm. 
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Proposition 2.6: Forward-looking reservation price for production (1) If output 

and material input prices are positively related, the reservation price above which a forward-

looking risk-averse firm does not produce is generally different from the risk-neutral or the 

myopic risk-averse reservation price. Moreover, such a firm does not necessarily produce an 

amount at which discounted expected next-date output price is higher than weighted current 

material input price plus marginal production cost. 

(2) If the firm is CARA and if output and material input prices are related as in (2.29) or 

(2.30). Then, the forward-looking reservation price is higher than the risk-neutral or the 

myopic risk-averse reservation price if (a) next-date output price is independently distributed 

from all posterior prices, or (b) the decision maker is sufficiently absolute risk-averse, or (c) 

output price follows a stationary autoregressive process and the decision maker is sufficiently 

forward-looking. 

Proof, See Appendix A. 

Corollarv to Proposition 2.6 If output and material input prices are related as in 

(2.29) or (2.30) and conditions (a), (b), or (c) in Proposition 2.6 are met, there exists a range 

of current prices over which the CARA forward-looking firm produces more than the risk-

neutral one. 

The intuition for Propositions 2.5 and 2.6 is the same as for tlie speculative storing 

firm. Again, our findings extend and qualify the standard results of the firm under uncertainty. 

For example. Proposition 2.6 explains the real-world observation that in many instances finns 

continue producing even if they expect not to recover their variable costs over short periods of 

time. 
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The key to the behavioral hypotheses derived for the forward-looking CARA firm is the 

positive contemporaneous relationship between output and material input prices. Tlie obvious 

question that arises is how strong and of what sign is that relationship in real-world situations. 

To this end, we report in Table 2.2 the correlation coefficients for six pairs of 

contemporaneous output and material input prices belonging to the U.S. agricultural sector. It 

can be seen that in all cases output and input prices bear a positive relationship. Table 2.2 also 

shows that the output-material input price relationship may be too strong to be neglected a 

priori when analyzing the firm under uncertainty. This is so even for firms in the farm sector, 

as suggested by the high correlation coefficients between the price pairs slaughter steers-feeder 

steers, egg-feed, and broiler-feed. 

Our results have implications for empirical work. First, the usual technique of a priori 

restricting the firm's production response to risk to be the same for all production levels may be 

inappropriate. In fact, doing so may bias empirical results towards rejection of the hypothesis 

that risk affects firm behavior. This observation is supported by empirical studies reporting 

that output price variance has a relatively low impact on production (e.g., Brorsen et al. 1985; 

Antonovitz and Roe 1986; Brorsen, Chavas, and Grant 1987; Aradhyula and Holt 1989; 

Antonovitz and Green 1990), and that material input price has a relatively higher effect on 

production than the expected output price (e.g., Antonovitz and Roe, Antonovitz and Green). 

Second, relaxing the myopic constraint seems relevant given the recent developments done 

towards allowing for both rational expectations and risk aversion (Aradhyula and Holt, 

Antonovitz and Green). Even tliough forward-looking behavior is not synonymous of rational 

expectations, the concept of rational expectations seems much more consistent with forward-

looking than with myopic behavior. 

Our findings are also relevant for the study of business cycles. Forward-looking 

CARA firms tend to produce less than risk-neutral ones at high output levels, but more at low 
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Table 2.2. Coefficients of correlation between contemporaneous output and material input 
prices, 1976:1-1987:12 

Output Material Input Coefficient of Correlation 

Wholesale beef 

Meal 

Oil 

Slaughter steers 

Eggs 

Broilers 

Live beef 

Soybeans 

Soybeans 

Feeder steers 

Egg feed 

Broiler grower feed 

0.985** 

0.942** 

0.859** 

0.908** 

0.751** 

0.550** 

^The coefficients were estimated using monthly data deflated by the Producer Price 
Index. 

**Signifîcant at 1%. 

Wholesale beef and live beef: Average prices of choice yield grade 3 steers at leading 
marketing areas (Source: USDA). 

Soybeans: Price of No.l Yellow, Illinois processors (Source: USDA). 

Meal: Price of 44 percent protein, bulk, FOB Decatur (Source: USDA). 

Oil: Price of crude, tanks, FOB Decatur (Source: USDA). 

Slaughter steers: Price of choice slaughter steers, 900-1,100 pounds, Omaha (Source: 
USDA). 

Feeder steers: Price of medium frame number one feeder steers, 600-700 pounds, 
Kansas City (Source: USDA). 

Eggs and broilers: Prices received by farmers (Source: Weimar and Cromer 1990). 

Egg feed: Egg feed costs (Source: Weimar and Cromer 1990). 

Broiler grower feed: Prices paid by farmers (Source: Weimar and Cromer 1990). 
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levels of production. This means that forward-looking CARA firms will dampen the effects of 

business cycles. 

Conclusions 

A well-known result from the theory of the firm under uncertainty is that a myopic risk-

averse firm produces less than an otherwise identical risk-neutral one. Our analysis reveals, 

however, that this conclusion is due to the assumption of myopic behavior and/or lack of 

correlation between output and material input prices. If output and material input prices are 

correlated, a risk-averse forward-looking firm may produce more or less than a risk-neutral 

one. 

We show that if the forward-looking firm exhibits constant absolute risk aversion and if 

material input prices are positively related to output prices, the risk averse firm will produce 

less than a risk-neutral one at some prices if at least one of the following conditions apply: (a) 

the next-date output price is independently distributed from all posterior prices, (b) the decision 

maker is sufficiently risk averse, or (c) the output price follows a stationary autoregressive 

process and the decision maker is sufficiently forward-looking. In such instance, risk-averse 

production exceeds risk-neutral output at low levels of production, and the opposite is true at 

high production levels. 

The model introduced in this chapter provides a rationale for stylized facts in 

microeconomics. For example, it explains why firms continue producing (or storing) in the 

short run even at an expected loss, and why farmers spread sales over time as a means to 

reduce risk. Our findings may also explain why empirical studies have found that the price 

variance has a relatively small impact on production. 
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CHAPTER ni. COMPETITIVE FIRMS IN THE PRESENCE OF FORWARD MARKETS 

With rare exceptions, previous work on hedging behavior has assumed a single 

production cycle. This implicitly assumes that the firm is myopic because such firm is not 

concerned about events that occur after the end of the current production cycle. Tliis 

assumption has been carried over from the risk and uncertainty literature and can be justified on 

the basis of simplicity. Danthine (1978), Holthausen (1979), and Feder, Just, and Schmitz 

(1980) applied Sandmo's model of the myopic firm under uncertainty to analyze the behavior 

of the firm in the presence of a forward market for output. They showed that the competitive 

risk-averse firm separates production from hedging decisions. They also proved that it is 

optimal to place a full hedge (i.e., to short hedge the entire production) if the forward price is 

unbiased. Otherwise, it is optimal to short hedge more (less) than total output when the 

forward price is greater than (less than) the expected cash price. 

A straightforward consequence of full-hedge optimality under unbiased forward prices 

is that most farmers should place full hedges most of the time. This should be the case because 

there is empirical evidence that futures prices are not significantly biased (Gray 1961, Rockwell 

1967, Tomek and Gray 1970, Just and Rausser 1981). But not all farmers hedge all of their 

output. Extensions to the myopic hedging model have been proposed that would explain this 

behavior. These include the introduction of production risk (Chavas and Pope 1982, Losq 

1982, Honda 1983, Grant 1985), basis risk (Batlin 1983, Paroush and Wolf 1989), hedging 

costs (Chavas and Pope), hedging restrictions (Antonovitz and Roe 1986, Antonovitz and 

Nelson 1988), and imperfect markets (Katz 1984). 

There may be instances, however, where the myopic assumption itself leads to faulty 

conclusions about optimal hedging behavior. Consider for example a risk-averse livestock 

feeder who plans to remain in production beyond the current feeding cycle. At the beginning 
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of the feeding cycle, the producer faces revenue risk because end-of-cycle output price is 

uncertain. But the firm also plans to purchase additional feeder cattle for tlie subsequent 

production cycle. For example, a beef fattener may plan to simultaneously sell fat cattle and 

purchase feeder cattle at the end of this feeding cycle. Revenue risk in this case will include 

output and input price risks. In most cases these risks will tend to offset each other because 

feeder cattle prices tend to be higher when fat cattle prices are high, and vice-versa. Intuitively, 

it is clear that the optimal hedge for a forward-looking firm (who plans to remain in production) 

will be different from a firm who myopically considers only output price risk. 

Forward-looking hedging behavior was analyzed by Anderson and Danthine (1983), 

and by Hey (1987). Anderson and Danthine allow the firm to revise its hedging decisions 

during the production cycle but assume a single production cycle. They show that forward-

looking producers should separate production and hedging decisions, but that if futures price is 

unbiased producers should not hedge all of their output. Hey allows for more than one 

production cycle and also finds that separation and suboptimality of full hedging hold. Hey's 

model is different from the one developed here because he assumes that (a) intertemporal utility 

is additive, (b) output cash prices are independently distributed and follow a constant 

distribution, and (c) sales decisions are taken after production and hedging decisions rather 

than simultaneously. Hey's results depend crucially on the sequential timing he imposes on 

sales, production, and hedging decisions. 

The purpose of this chapter is to formally demonstrate the concept that the forward-

looking optimal hedge is different from the myopic optimal hedge. We postulate a risk-averse 

firm that maximizes expected utility of terminal wealth, and derive some propositions regarding 

optimal hedging behavior under both myopic and forward-looking hypotheses. Unless stated 

otherwise, we retain the basic assumptions made in Chapter II. Because the correlation 

between output and input prices is more clear for speculative storage, we first present results 
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for the speculative firm who only stores and then for the firm who is involved in production 

and cannot store. The last section reports the main conclusions from the chapter. 

A Theoretical Model of Speculative Storage 

We first assume the firm's productive activity is the speculative storage of a particular 

product, and that the firm can trade in a forward market for this product. 13 We hypothesize 

that at any date t there are only two positions that can be negotiated in the forward market: one 

for delivery at t+1, and the other for immediate delivery (i.e., delivery at t).14 We denote by 

Fj the net short forward position for delivery at time t+1 open at date t. There are no 

restrictions on the amount or sign of the forward position held by the firm, except that the firm 

cannot have an open position for delivery at date T+1 at the end of the terminal trading date 

(FT ~ that it cannot hold an open position for delivery at time t at the end of trading date 

t (F{ J = - Fj_ J J, where the first subscript denotes the opening date and the second one the 

delivery date). 15 The cash flow from opening a forward contract lags by one period because 

forward trades do not involve cash flows until open positions are closed. Tlie forward price 

prevailing at t for immediate delivery is identical to the current cash price (p^). The forward 

l^By using a forward instead of a futures market we can ignore basis risk. This 
facilitates the analysis to a great extent. 

l^We do not require actual delivery, but we still use this tenn for clarity of exposition. 
Forward commitments may be canceled either by delivering the good or by undertaking an 
opposite transaction in the forward market. 

l^This means that at any date t < T firms have only one free choice regarding the two 
tradable positions in the forward market, which is how much to commit for delivery (or 
receipt) at t+1. The other activity is to cancel out the open position for delivery at t, which is 
not a free choice because it must be done to satisfy the restrictions. 
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price at t for delivery in the following date t+1 (denoted by f[), however, will be generally 

different from the current cash price p^. 

Under the above specifications, the firm's cash flow at any date t < T is represented by 

(3.1) TCt = Pt Pt - '(^t - ̂ t) + (4-1 - Pt) Ft-1 s.t. It+1 = It - ^t - 0 

Note that we must now restrict /(•) to be strictly convex in order to obtain a bounded solution. 

We hypothesize that the firm selects the levels of current good sales (Pj.) and current hedging 

(Fj) that maximize expected utility, given the available information (e^). Hence, optimal 

decisions are made by solving the dynamic programming problem 

(3.2) M[(WT, ej) = max^^fjOiV-j-)! 

where: £j'(W'p) = U(W'p) + Tj-p (ly - Py) 

£t(Wj)= / J ^t+K^T' Gt+l) 
Pt+14+1 

^t+l(Pt+l' ft+l' PQ' •••' Pf y (/Pt+1 + Tit Gt - Pt)' 0 < t < T 

dt = (Ft. Ft) if 0 < t < T, dy = (Pj, 0)16 

Terminal wealth is as defined in (2.1), and cash flows are given by (3.1). The function 

^t+l(Pt+l' 4+l' PO' •••' Pf represents the conditional density function of p^^j f^+j 

lÔRecall that F-p = 0 by assumption. 
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given (pQ, fg,P[, ff). The vector contains the firm's decision variables corresponding to 

date t. Applying the techniques employed in Chapter II, it is straightforward to show that the 

optimal decision vector corresponding to the terminal date is dy = (ly, 0), that terminal utility 

is maximized at 

(3.3) mjoy-p, ej) = u[r'p.j w-p.j + py i-p + (fj.j - py) ft-i^ 

and that the FOCs for dates previous to the terminal time (0 < t < T) are 

9£t 
(3.4) —— Tj+j ... rj.j [r^ (pj + i') M^' - E[(pj^j ^t+1 ' ^ t  ~  ®  

a£t 
(3'5) ^— ̂ t+l ••• '"T-l t^t ^t " ®t(Pt+l ^t+1 ~ ® 

dht 

9£f d £ f  
(3.6) ^ =It-Pt>0,îit>0,Tit ^ =0 

oTIj oTlf 

Before proceeding, it is necessary to know the determinants of the optimal physical 

decisions (i.e., the variables that affect optimal storage Ij or, equivalently, optimal sales PQ). 

The main results regarding this issue are summarized in Proposition 3.1. 

Proposition 3.1: Storage and sales behavior In the presence of a forward market, 

optimal storage (or sales) for a risk-averse firm is determined independently from the subjective 

joint distribution of random variables, from the decision maker's degree of risk aversion, and 

from the optimal hedging decision. If positive, optimal storage is such that discounted current 

forward price equals current cash price plus marginal storage cost. These results hold for both 

myopic and forward-looking firms. 
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Proof. According to FOC (3.5), at the optimum the equality 

(3.7) Eo(PiMi')=foMo' 

holds. Substituting (3.7) into FOC (3.4) and rearranging yields 

(3.8) fg - rg [po + '"(II)] = - T|o/(ri ... r-p.j Mg') 

Hence: 

a. If fg < rg [pg + /'(O)], then Tig > 0, and therefore Ij = 0. 

b. If fg = rg [pg + i'(0)], then Tig = Ij = 0. 

c. If fg > rg [pg + j'(0)], then Tjg = 0, and therefore Ij > 0 satisfying fg = rg [pg + /'(Ii)]. 

Q.E.D. 

Proposition 3.1 shows that separation between physical and hedging decisions is a 

robust property of the model. This is true because it holds for either myopic or nonmyopic 

behavior. Our results extend to the forward-looking scenario the findings by Danthine (1978), 

Holthausen (1979), and Feder, Just, and Schmitz (1980), without the simplifying assumptions 

used by Hey (1987). Optimal storage (and sales) behavior is completely characterized in the 

proof to Proposition 3.1, and comparative statics follow easily from total differentiation of 

%-r0[P0 + ("(Ii)] = 0.17 

^^Note that in the forward-looking scenario we cannot use jointly nonnally distributed 
prices to justify mean-variance analysis. Next-date storage (I2) is random but cannot follow a 
normal distribution because fimis do not store if f( < r^ [p{ + /'(O)]. 
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We turn now to the focus of this chapter, i.e., the characterization of the optimal hedge. 

To this end, we will find useful to rewrite one of the components of FOC (3.5) in an alternative 

way, namely: 

(3.9) Eo(pi Ml') = EQEpi EO(MI'I pj)] 

= Eo(Pl) + Cov[pi, Eq(MI'I pj)] 

where: Eo(Mi'l pj) = J Mj7i(fil pg, fQ, Pi) û?fi > 0 

By employing (3.9) and the fact that E^(M[^i') = M^', we can state FOC (3.5) as follows: 

(3.10) [fo - Eo(pi)] Mo' = Cov[pi, Eo(Mi'l pi)] 

Inspection of the sign of the covariance term in expression (3.10) allows us to state the 

results summarized in Propositions 3.2 and 3.3. 

Proposition 3.2: Myopic storage hedge The optimal hedge for a myopic risk-

averse firm that perceives the forward price to be unbiased is to (short) sell forward the total 

amount stored. This hedge is independent from the myopic firm's degree of risk aversion. 

Proof. According to (3.10), at the optimum [fg - Eo(Pi)] and Cov[pi, Eo(Mi'l pi)] must 

bear equal signs because M(' > 0. In particular, Cov[pi, Eo(Mi'l pi)] = 0 if fg = Eo(pi). 

For the myopic firm date 0 = T-1, and from (3.3) we have EY.I(MI''I pj) = Mj'. Then, 
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9Ef. 1 (Mf'l pt) ^ ^ 
(3.11) —^ ^ ^ ^ = ax - FT-1) W ̂ Oas F-r.i ^Ij 

dpT 

because M-p" < 0. But p^ is monotonically increasing in p^ and Bp_2(MY'l pj) is 

monotonically increasing (decreasing) in py if F'p.j > ly (Fy.j < ly). Hence, applying 

Theorem 43 in Hardy, Littlewood, and Polya (1967) we obtain 

(3.12) Cov[p'p, l&p.i(M'j''l Pf)] ̂  0 as ^ If 

In particular, if f^.i = Ey.i(pj) it must be true that F^.i = Ij. Q.E.D. 

Proposition 3.3: Forward-looking storage hedge (1) The optimal hedge for a 

forward-looking risk-averse firm that perceives the forward price to be unbiased is not 

necessarily to sell forward the entire quantity stored. Furthermore, the optimal forward-

looking hedge depends upon the firm's degree of risk aversion. 

(2) If the firm is CARA and (a) next-date cash price is independently distributed from 

next-date forward price and from all posterior (cash and forward) prices, or (b) the decision 

maker is sufficiently absolute risk-averse, then the optimal forward-looking hedge under 

unbiased forward price is strictly smaller than the entire amount stored. 

Proof. We show only part (2) of Proposition 3.3, because it implies part (1). For a 

nonmyopic CARA firm we have 
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3En(Mi 'I Pi) 
(3.13) " = ri ... r^.i di - Fq) Eo(Mi"I pi) - rj ... r^.i Eqdz Mj"! pj) 

dpi 

fj X 3pj ^ 

- J {maxd [ I J ^ aA2(P2. fz^PO'fO'Pl'fl) p^) 

fl '• V2 h  ̂ ®Pl 

-...- / {maxj, [ / / maxj, ( J J ... 
fl ^P2 h P3 % 

/  I ^  a M P T . f T l P 0 . f 0 . - . P T - l . f T - l )  

PT-I^T-I PT ^ "Pi 

^T-1(PT-1' ^T-l' PO' •••' PT-2' %2) ̂ ^T-l ^PT-l) ••• 

^2(P2' ^2' PO' Pi' fl) ̂ ^2 ^P2l}/l(fl' PO' %' Pi) ̂ fl 

where/^(f21 pg, fg, pj) is the conditional density function of f^ given (pQ, fg, pj). Using the 

fact that Mj^j" < 0, we get^^ 

(3.14) (Ij - Fq) Eo(Mi"I pi) ̂  0 as Fq ^ Il 

(3.15) Eo(l2Mi"lpi)<0 

Under condition (a), all terms in the right-hand side of (3.13) vanish except the first 

two terms. Then Fg > implies 3EQ(MI'I pi)/3pi > 0 and therefore 

l^The proof that E[(I[^2 ^t+1 Pt+l) < 0 is shown in Appendix B. 
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Cov[pi, EQCMJ'I PJ)] > 0. Hence, if fg = EgCpi) we must have Fg < Ij. 

The proof for condition (b) is straightforward, by noting that 

3En(Mi 'I pi) 
(3.16) lim;^_,_ ^ ^ = ri ... r^.i di - FQ) EgCMi"! pj) 

dpi 

- ri ... rj.i Eo(l2 Mi"l pi) Q.E.D. 

Corollary to Proposition 3.3: CARA forward-looking storage hedge If the firm 

is CARA and (a) next-date cash price is independently distributed from next-date forward price 

and from all posterior (cash and forward) prices, or (b) the decision maker is sufficiently 

absolute risk-averse, then the optimal forward-looking hedge may be strictly smaller than the 

entire amount stored under an upwardly biased forward price. 

The results reported in Proposition 3.2 are analogous to those obtained by Holthausen 

(1979), and Feder, Just, and Schmitz (1980), and demonstrate that this model is consistent 

with the standard literature. Our findings about the optimal forward-looking hedge reveal that 

full-hedge optimality under unbiased forward price is not robust because it applies only to the 

myopic scenario. From the proofs of Propositions 3.2 and 3.3, it is clear that the simplicity of 

the optimal myopic hedge under unbiased forward price is attributable to the fact that the 

myopic firm assumes with certainty that whatever it stores now will be completely sold in the 

next trading time, and that it will store nothing at the next date (i.e., I2=T+1 ~ 0). Also, the 

myopic firm plans to hedge nothing at the next trading time (i.e., F^.y = 0). In contrast, the 

forward-looking firm assigns a positive probability to storing and/or a nonzero hedging at the 

next trading date. But next-date storage and hedge are correlated with next-date cash price, and 
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therefore they serve as (partial) substitutes for current hedging. It is this substitution effect tliat 

leads to full-hedge suboptimality in the forward-looking scenario. 

An alternative interpretation of the full-hedge suboptimality result is that we have 

formalized a common behavioral pattern known as anticipatory hedging. The firm may operate 

in the forward market to speculate, and/or to place two types of hedges, namely risk-avoidance 

and anticipatory hedges. 19 If the forward price is unbiased, the firm does not speculate and 

trades forward only to hedge. The risk-avoidance hedge consists of selling current storage 

forward to reduce its price risk, whereas the anticipatory hedge is placed to avoid the price risk 

of next-date storage. Therefore, the risk-avoidance hedge is identical to current storage. In 

contrast, the size of the anticipatory hedge depends upon the distribution of (random) next-date 

storage and hedge, the agent's degree of risk aversion, and the joint distribution of random 

prices, among other factors. Hence, the sum of risk-avoidance and anticipatory hedges 

generally differs from current storage, and it depends upon the degree of risk aversion. This is 

true unless the firm currently knows exactly how much it will store and hedge at next-date, so 

that next-date storage and hedge are nonrandom. The myopic case is an example of the latter 

situation, in which next-date storage and hedge are known to be exactly zero (I2=T+1 ~ 0, 

Fi=T = 0). 

The general suboptimality of the full hedge under unbiased forward prices is an 

important result It is widely accepted that full hedging is optimal when forward price is 

unbiased. The full hedge is appealing because of its simplicity. Also, its nonnative content is 

easy and broadly applicable because it makes complete abstraction of the agent's degree of risk 

aversion. Our model brings attention to the fact that, despite these appealing characteristics, 

l^Risk-avoidance and anticipatory hedges are defined in Marshal! (1989). 
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full-hedge optimality depends crucially upon assuming myopic behavior or independence of 

output and material input prices. 

Given the previous discussion, it is easier to understand why the full hedge 

overestimates the optimal forward-looking hedge under unbiased forward prices when the firm 

is CARA and assumption (a) in Proposition 3.3 applies. Next-date storage is negatively 

associated with next-date cash price, and therefore next-date storage eliminates part of next-date 

cash price risk: revenue from current storage will be low if pj is low, but then the firm will be 

able to buy material input to store at a low price, thereby partially offsetting the lower revenue. 

This means that next-date storage is an imperfect substitute for current hedging, so that the 

hedge required to minimize next-date cash price risk is smaller than it would be if next-date 

storage did not contribute to risk reduction. 

If the next-date cash price is related to the next-date forward price, the optimal forward-

looking CARA hedge may be larger than the amount stored even under unbiased forward 

prices. This may happen because next-date cash price indirectly affects the current hedge 

through its relationship with next-date forward price. The sign and magnitude of this indirect 

effect depends on the size of next-date hedge, which in turn may be positive or negative and 

large enough to yield a current hedge exceeding storage. If the forward-looking CARA finn is 

sufficiently risk averse, however, the direct effect of next-date cash price on current hedge 

outweighs any indirect effect, yielding an optimal hedge that is smaller than storage under 

unbiased forward prices. 

Expression (3.13) is helpful in that it allows us to separate clearly tlie three main 

components involved in the optimal forward-looking hedge. The first term in the right-hand 

side of (3.13) is the risk-avoidance component, whereas the second and third tenns are the 

anticipatory components. The risk-avoidance term vanishes if Fg = I^. The anticipatory 

component can be further divided into direct and indirect anticipation tenns (i.e., the second 
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and third right-hand side terms, respectively). The direct anticipation component is due to the 

effect of next-date storage (I2). The direct anticipation term is strictly positive irrespective of 

risk attitudes or price distributions, and requires a long hedge (FQ < 0) to equal zero. Finally, 

the indirect anticipation component involves the impact on current hedging attributable to the 

interaction between the risk attitude and the price distribution, and it has an ambiguous sign. 

When assumptions (a) or (b) of Proposition 3.3 hold, the optimal forward-looking 

hedge under unbiased forward price is strictly negative if nothing is stored (e.g., FQ < Ij = 0), 

so that the nonmyopic firm establishes a long forward position. In contrast, the optimal 

myopic hedge in the same situation is FQ = 0. This is a useful result, because it explains the 

existence of anticipatory hedging under unbiased forward prices without resorting to ad-hoc 

assumptions. 

In the standard myopic framework, anticipatory hedging is modeled assuming that the 

firm currently knows exactly how much it will store and hedge at next date, which is clearly an 

inconsistent hypothesis. If the firm is myopic, we have shown that it is suboptimal to expect 

next-date sales to be anything less than beginning stocks. If the firm is nonmyopic but knows 

next-date storage and hedge with certainty, then either prices are nonstochastic, or the firm 

does not behave optimally. 

A Productive Non-Storing Firm 

Having analyzed the hedging firm involved with storage only, we will address now the 

case in which the firm produces and does not store for speculative purposes. We will assume 

that the production and cost functions are given by expressions (2.24) and (2.25), respectively, 

but we will restrict the nonmaterial cost function c(-) to be strictly convex to obtain a bounded 

solution. Because in this instance output and material input prices are different from each 
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other, to make the analysis more interesting we will hypothesize that there exist forward 

markets for both output and material input. We will denote the forward price and forward 

position corresponding to material input by and Fj, respectively. Then, the cash flow for 

the productive nonstoring firm becomes 

(3.17) TTj = pt Qt.i - O Sj Qt - c(Qt) + (fj.i - pt) Fj.i + (fji - s^) F®.j s.t. Qj > 0 

and the dynamic programming problem to obtain the optimal solution is 

(3.18) Mt(W'p, Cj) = maxj^f^(WT)l 

where: £j(Wj') = U(W'p) 

£T(WT)= / / J J Mt+i(W-r,et+i) 
Pt+1 ̂ t+1 n+1 , 

n+l 

Â+l^Pt+l' ®t+l' ft+1' ^+l' PO' ®0' ^0' *••' Pf ®t' ^t' 

(^C-l ^^t+l ^h+l ^Pt+1' 0 ^ t < T 

dt = (Qt, Ft, F®) if 0 < t < T, dj = (Qj, 0, 0), Qt > 0 

Terminal wealth and cash flows are given by (2.1) and (3.17), respectively. The function 

;t+i(Pt+i. St+i, ft+i, f^+i' PQ, SQ, fg, f^, Pt, Sf, fj, f^) represents the conditional density 

of Pt+1» ^t+1' ^+1 (PQ' ®0' ^0' •*•» Pf ®t' ^t' ' 



www.manaraa.com

51 

The analysis of optimal production and hedging for a firm with a cash flow described 

by (3.17) can be performed using similar procedures as before. To avoid repetition, we outline 

the main results here, and focus on the most important behavioral differences between 

speculative storing and productive nonstoring firms. The maximum attainable utility at the 

terminal date can be shown to be 

(3.19) M'p(W'p, ej) = U[r'p.i W-p.j + py Q'p.j + (f-p.j - p-p) Fy.j + (f^_j - sy) Fj_j] 

and the FOCs for any date preceding the terminal time are 

d£r d£f 
(3.20) ^ = rt+i ... r^.i [Et(Pt+i M^+i') - r^ (0 s^ + c') M^'] < 0, Qj > 0, Q ' = 0 

d£f 
(3.21) ^ = r^+i ... rx-i % M^' - %+! M^+i')] = 0 

3£f c 
(3.22) —^ = rt+i ... r^.i [f^ m^' - m^+i')] = 0 

apt 

The most important results regarding the productive nonstoring finn are obtained by 

means of FOCs (3.20) through (3.22). These results are summarized as Propositions 3.4, 

3.5, and 3.6, which are the respective counterparts of Propositions 3.1, 3.2, and 3.3. 

Proposition 3.4: Production behavior In the presence of an output forward 

market, optimal production for a nonstoring risk-averse finn is independent from the subjective 

joint distribution of randorh variables, from the decision maker's degree of risk aversion, and 

from the optimal hedging decision. If positive, optimal production is such that discounted 
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current output forward price equals (weighted) current material input cash price plus marginal 

production cost. These results hold for both myopic and forward-looking firms. 

Proof. See Appendix B. 

Proposition 3.5: Mvopic production hedee The optimal hedge for a myopic 

nonstoring risk-averse firm that perceives output and material input forward prices to be 

simultaneously unbiased is to sell the entire production in the output forward market, and to 

sell nothing in the material input forward market. This hedge is independent from the myopic 

firm's degree of risk aversion. 

Proof. See Appendix B. 

Proposition 3.6: Forward-looking production hedge (1) The optimal hedge for a 

productive nonstoring forward-looking risk-averse firm is generally different from the optimal 

myopic hedge. Furthermore, the optimal forward-looking hedge depends upon the firm's 

degree of risk aversion. 

(2) If the productive nonstoring forward-looking firm is CARA and (a) next-date output 

and material input cash prices are each independently distributed from all other 

contemporaneous and posterior prices, or (b) the decision maker is sufficiently absolute risk-

averse, then the optimal hedge under unbiased output and material input forward prices 

consists of selling the entire production in the output forward market, and buying forward 

contracts of material input. 

Proof. See Appendix B. 
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Proposition 3.4 confirms the robustness of the separation result, showing that it applies 

to a cost function which characterizes many production processes even when the firm is 

forward-looking. It is also important to note that separation holds irrespective of the existence 

of a forward market for material input. Propositions 3.5 and 3.6 highlight the differences 

between myopic and forward-looking hedging behaviors and confirm the weakness of the full-

hedge optimality result 

Even for the myopic case, it will generally be true that FQ ̂  QQ and FQ ^ 

simultaneously if output or material input forward prices (or both) are biased. This can be seen 

from^O 

^3 23) PT) 
3pT 

= (QT-1 " ^T-I) ET-I(^T"' PT) 

„ ^T' 4^' PT-1' ®T-1' ^T-1' ^T-I' PT) 

3pT 

^3 24) ^^T.I(MT'I ST) 

3ST 
= - F'P_J LBP_J(M'P"L SY) 

„ 9/T(PT' ^T' PT-1' ^T-L' ^T-L' ^T-L' ^T) 
3s'j' 

^^Expressions (3.23) and (3.24) follow from (B6) and (B7) in Appendix B, 
respectively. 
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where fj, f^l s^.i» %-!' fx-i- Pt) ^^e conditional density function of s-p, fy, 

and given (px.i, s^.j, fx-i» fj-l' PT^' ^T^PT' 4^' PT-1' ®T-1' ^T-1' 4'-1' 

the conditional density function of p-p, fj, and given (P7.1, fj-l' ̂ -1» For 

example, if the material input forward price is biased and the output forward price is not, FOCs 

require SyVBs-p ^ 0 and BE^.^CM-p'! Px)/5pt = 0. This will generally mean a 

nonzero forward position in the input market (Fj_j ^ 0) and an output hedge different from 

total production (Fj.i ̂  Qx-i)- IN fact, a full output hedge (F^.I = QT-I) does not yield 

3Ej.i(M'j''l pyV^py = 0 if Fy_ j 0 unless py and Sy are independently distributed. 

Proposition 3.6 clarifies our previous explanations for the storage case. With unbiased 

forward prices, the optimum hedge consists of the risk avoidance hedge (FQ = QQ) and the 

anticipatory hedge (FQ < 0). In terms of payoff with respect to alternative forward prices, the 

net effect of both forward positions (FQ, FQ) is similar to a less than fully hedged output 

position so long as output and input prices are correlated. Because of this, a predictable 

consequence of not having a forward market for material input is that the optimal forward-

looking CARA hedge under unbiased forward price and conditions (a) or (b) is smaller than the 

entire production. This result is formalized in Proposition 3.7. 

Proposition 3.7: Forward-looking hedge in the absence of input forward markets 

Assume there is no forward market for material input, the productive nonstoring firm is 

CARA, and material input and output cash prices are related as in (2.29) or (2.30). Then, the 

optimal forward-looking hedge under unbiased forward price is smaller than the entire 

production if (a) next-date output cash price is independently distributed from next-date 

forward price and from all posterior prices, or (b) the decision maker is sufficiently absolute 

risk-averse. 
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Proof. See Appendix B. 

Corollary to Proposition 3.7 If the assumptions in Proposition 3.7 are met, then 

the optimal forward-looking hedge may be strictly smaller than the entire amount stored under 

an upwardly biased forward price. 

Proposition 3.7 reminds us that the standard full hedge optimality result depends 

crucially on the firm being myopic, or on output and material input cash prices being 

independent from each other. Full-hedge suboptimality under nonmyopic behavior and 

unbiased forward prices is important, and specially relevant for empirical work. Recently, 

some studies have been conducted to obtain empirical estimates of the "optimal hedge" when 

there is a futures rather than a forward market (Witt, Schroeder, and Hayenga 1987; Cecchetti, 

Cumby, and Figlewski 1988; Myers and Thompson 1989). The normative content of these 

studies is usually emphasized on the basis that the optimal hedge under unbiased futures prices 

is independent of the decision maker's degree of risk aversion (Batlin 1983; Benninga, Eldor, 

and Zilcha 1984). Our results suggest that this would be the case only if the agent is myopic, 

or output and material input cash prices are unrelated to each other. 

Conclusions 

In this chapter we have shown that separation between production and hedging is a 

robust result, because it holds even if firms are forward-looking. In the presence of forward 

markets, optimal production for a forward-looking firm is identical to an otherwise equivalent 

myopic firm. Optimal production is detennined solely by nonrandom factors, and is 

independent from the agent's price expectations and from his degree of risk aversion. 
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In contrast, full-hedge optimality under unbiased forward price only holds if the 

decision maker is myopic or if output and material input cash prices are independent from each 

other. Full-hedging is suboptimal when the firm is forward-looking because in this instance 

the firm foresees that at next decision date it will stay in the market and it will take decisions 

based on the obseived values of the relevant random variables. Hence, next-date decisions are 

random and affect the current risks faced by the firm, and therefore will have an impact on the 

optimal current hedge. If the forward-looking firm is CARA and (a) next-date cash prices are 

independent of other simultaneous and posterior prices, or (b) the decision maker is sufficiently 

risk-averse, then under unbiased forward price the optimal storage hedge is strictly smaller tiian 

the entire amount stored, and the optimal production hedge in the absence of a forward market 

for material input is strictly less than the quantity produced (assuming output and material input 

cash prices are positively related). 

Our results may help explain why farmers are observed not to fully hedge, even when 

there is empirical evidence that futures prices are generally unbiased. Also, full-hedge 

suboptimality under nonmyopic behavior and unbiased forward prices appears relevant for 

studies concerned with the empirical estimation of optimal hedges in the presence of futures 

rather than forward markets. 
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CHAPTER IV. SHORT-RUN BEHAVIOR FOR A PRODUCTIVE STORING FIRM: THE 

CASE OF THE U.S. SOYBEAN-PROCESSING INDUSTRY 

The objective function used in the theory of the firm typically contains variables 

reflecting output price times output quantity and a quantity-dependent cost function. Implicit in 

this approach are the assumptions that the firm simultaneously sells output and buys inputs at 

known prices. In many firms, however, much of the managerial effort is targeted toward 

buying inputs when their prices are lowest, selling output when its price is highest, using input 

and output storage to take advantage of price movements, and employing forward markets to 

hedge some of the risks associated with production and storage. These activities are 

particularly important in commodity-oriented firms, such as those involved in producing and 

processing food and natural resources. 

In the medium and long term, these observed differences between production and 

output sales and between input purchases and usage are averaged out and seem trivial; 

however, the medium- and long-term behavior of the firm may reflect the cumulative impact of 

short-term decisions. In this case, a full understanding of long-term behavior will depend, in 

part, on how managers respond to short-term incentives. 

In this chapter, we develop and test a theory of short-run competitive firm behavior 

under risk aversion in the presence of futures markets. Consistent with the preceding analysis, 

we allow the firm to be forward-looking. We also show how short-term parameters can be 

used to derive meaningful long-term response parameters. This chapter is organized as 

follows. In the following section we lay out the theoretical model. We then test some of tlie 

theoretical results using data from the U.S. soybean-processing industry, and we discuss our 

findings. In the final section we summarize the major conclusions of the chapter. 
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The Tlieoretical Model 

Relaxation of the standard nonstorage constraint is one of the main contributions of our 

analysis. Hence, we make explicit allowance for storage of both output and material input. 

This means output sales and material input purchases will generally be different from the 

amount produced and the material input employed in the production process, respectively. We 

also allow for the presence of forward markets for both output and material input. This is the 

most general setting of our model; in situations where futures or forward markets are not 

available the more general scenario can be adjusted by omitting the relevant variables from the 

objective function. Therefore, given the specifications discussed in the preceding chapters, tlie 

particular form of the firm's cash flow at date t is represented by 

(4.1) TCt = Pt Pt - St St - c(Q^/0) - /(It - Pt) - /'(It' + St - Qt) 

+ (ft-l,t-Pt)Ft.l + (ff.l;t-St)Ft.l 

s.t. It = It.i - Pt-i + Qt-i ^ Pt. It + St ̂  Qt - Qt ^ 0 

where St denotes material input purchases, / (•) is a strictly convex inventory cost function of 

material input [/''(•) > 0], and 1^ is beginning inventory of material input at date t 

[It = Ij.j + St.i - Qt-il- Note that in this chapter we will use fj.j t zind to denote f^.^ and 

f^_J, respectively, because it will be helpful to do so for the empirical application. 

At any date t the firm chooses purchases and use of material input (Sj and Qj), 

production (Qt = O Qj), sales of final product (Pj), and hedging (Ft and Fj.) so as to maximize 

expected utility of terminal wealth, given the information available (e^). Hence, the optimal 

decisions at current date t = 0 are made by solving the dynamic programming problem 
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(4,2) MjCVVt, CJ) = maxj^f^(WT)l 

where: £'j'(W'j') = U(W'p) + ÎIT (If - Py) + Tiy (I-p + - Qy) 

£t(WT) = %[Mt+i(WT, et+i)] + dt - Pt) + n' (I® + St - Q"), 0 < t < T 

dt = (Pt, Qt, St, Ft, F®) if t < T, dT = (PT. QT' ^T. 0, 0) 

Tif = Lagrangian multiplier corresponding to inventory of material input 

and Ttt is as defined in (4.1). The first-order conditions (FOCs) corresponding to this problem 

can be expressed as^l 

(4.3) ^ =rt+i ... r-r.i [rt (Pt + i') M^' - Et(pt+i Mj+j')] -11^ = 0 

d£t c c 
(4.4) = rt+i ... ry.i [Et(Pt+i/0 M^+i') - r^ (Sj + ?'/$) M^'] < 0, > 0, Qf --1 =0 

9Qt 9Qt 

3£t s o 
(4.5) = rt4.j ... r-p.! [Et(®t+1 ^t+1 ) " 4 (^t ^ ) ^t^ + ^t ~ ^ 

d£f 
(4.6) — = r^+i ... tt-I t^t.t+l ^t " ^t(Pt+l ^t+1 )] ~ ® 

3£t c 
(4.7) -4 = rt+i ... rT.i [f^-t+I ^t' ' ̂[(«[+1 ^t+i')] = 0 

Expressions (4.3) through (4.5) are derived in Appendix C. 
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(4.9) -i=It' + St-Qt^O,'n®>0,Tij' 
anf It 

The rationale for Kuhn-Tucker condition (4.4) is that the amount processed cannot be 

negative (i.e., production reversal is precluded). We have not added Kuhn-Tucker conditions 

to either (4.3) or (4.5)-(4.7) because we do not require non-negativity of final product sales, 

material input purchases, or forward positions. This means that the firm can buy final product, 

sell material input, or have a net long forward position. 

The preceding FOCs can be further manipulated to yield separation between "physical" 

decisions (i.e., purchases, production, and sales) and hedging. This is readily shown by 

substituting (4.6) into (4.3) and (4.4), and (4.7) into (4.5), and rearranging, which yields the 

set of expressions (4.10)-(4.12) as an alternative to (4.3)-(4.5): 

(4.10) ft - Tt [pt - i'dt- = nt/(rt+i ... r-r.i M^') 

(4.11) ft,t+i/^ - rt [St - qXQlmm < 0, Qj > 0, (ft,t+i/0 - rt [St - ) = 0 

(4.12) f^t+i - rt [St - /''(It + St - Qt)] = Tlt/(rt+l fT-l ^t') 

independently from hedging, purchases, sales, and beginning inventories. A careful look at 

(4.10) and (4.8) reveals that output sales (Pj) are independent not only from the amounts 

hedged but also from use, purchases, and beginning stocks of material input. Output sales can 

take any value that does not exceed beginning stocks of final product. If sales equal beginning 

Expression (4.11) allows us to solve for the optimal level of material input use (Q^) 
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stocks, then Pj = 1^; if sales are strictly less than beginning stocks then = 0, and the precise 

level of sales is obtained from (4.10). Similarly, expressions (4.12) and (4.9) allow us to 

solve for the optimal level of material-input purchases (S() independently from sales and 

beginning stocks of final product 

In summary, the existence of forward markets for final product and material input leads 

to separation ofpurchasestprocessingisales and speculative decisions for the forward-looking 

risk-averse firm. Moreover, optimal purchases, processing, and sales are independent of the 

agent's degree of risk aversion and the distributions of random cash prices. Sales of final 

product are obviously independent of the level of risk aversion and random prices so long as 

sales equal beginning inventories (i.e., = I^). Alternatively, if sales of final product are 

smaller than beginning inventories (i.e., P^ < Ij), then the terms in which the risk attitude and 

the random prices appear collapse to zero, and again sales are independent of these variables. 

A similar analysis can be applied to show that purchases of material input are also independent 

of the decision maker's degree of risk aversion and the distribution of cash prices. 

Comparative statics corresponding to output sales and to purchases and use of material 

input for an interior solution can be obtained by setting the right-hand terms in (4.10) through 

(4.12) equal to zero and totally differentiating the resulting expressions. This derivation is 

straightforward after recalling the properties imposed on the nonmaterial and storage cost 

functions [c(0, /(•)» and i (•), respectively]. Comparative statics are summarized in Table 

4.1. 

The theoretical results reported in Table 4.1 indicate that use of material input should be 

negatively related to its current cash price and positively related to the forward price of final 

product Beginning stocks of final product may or may not affect material input use, 

depending upon the particular nonmaterial cost function chosen. By imposing some 

constraints on the nonmaterial cost function we can obtain the intuitively appealing theoretical 
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Table 4.1. Theoretical effect of exogenous variables on material input use (production), 
material input purchases, and output sales over the decision horizon 

Explanatory Variables Endogenous Variables 

Mat. Input Use Mat. Input 

Purchases 

Output Sales 

Cash prices: input - - 0 

output 0 0 + 

Forward prices: input 0 + 0 

output + + -

Interest rate -/? -/? +/? 

Beginning stocks: input 0 - 0 

output 0/- 0/- + 
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result that material input use adjusts negatively to higher beginning stocks of final product.22 

The impact of the interest rate on input use is negative if use is independent of output beginning 

stocks, and it is ambiguous otherwise. Purchases of material input respond in the same 

fashion as material input usage but are also positively related to the current forward price of 

material input and negatively related to the beginning stock of material input. Sales of final 

product are independent of cash and forward prices of material input as well as beginning 

inventories of material input. Output sales are positively related to current output cash price 

and beginning inventories of final product, and they are negatively associated to current output 

forward price. The interest rate has a positive effect on sales if input use does not depend on 

output beginning stocks, and an ambiguous effect otherwise. 

The existence and direction of the causal relationships summarized in Table 4.1 are very 

different from those predicted by the standard myopic model. This is true because in the 

myopic model processing, purchases, and sales are either identical or bear fixed relationships. 

It is interesting therefore to see if the hypothesized relationships of Table 4.1 are supported by 

an appropriate data set This is the purpose of the remainder of the chapter. 

Empirical Results and Discussion 

We chose the U.S. soybean-processing industry to test our theoretical propositions 

because there are highly liquid futures markets for both material input (soybeans) and final 

goods (soyoil and soymeal) in the Chicago Board of Trade (CBOT). In addition, there are 

^^This response to beginning inventories of final good is obtained by letting 

<?(•) = It). <72 > 0' <722 > 0, <712 = 0. 
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available high-quality data at a monthly frequency, which is the obseiyation horizon we 

employed.23 

Before turning to the description of the methodology, data, and estimation procedures, 

it is worthwhile to summarize the empirical results from the econometric model in terms 

comparable to Table 4.1. This inversion of the standard presentation procedure allows a more 

direct linkage of theory and practice and is justified in part by the necessary complexity of the 

application of the model. Table 4.2 is entirely analogous to Table 4.1, but it contains the 

estimated partial elasticities corresponding to the U.S. soybean-processing industry.24 a 

comparison of Tables 4.1 and 4.2 demonstrates that use and purchases of material input, as 

well as final product sales generally follow the hypothesized pattern. The only exception is that 

beginning output stocks have a nonsignificant effect on material input purchases. Price 

variables have low or no significance in the input purchase equation which, however, is due to 

multicollinearity (this point is discussed in more detail in the next section). 

The most important feature of these results is that decisions regarding input use, input 

purchases, and output sales can be treated separately and in a predictable way when we build 

models of the short-run behavior in these industries. In results presented later we show that 

the relationships left blank in Table 4.2 are nonsignificant. In the absence of the preceding 

theoretical analysis the lack of significance of these missing variables might seem 

counterintuitive. For example, one might (as the USDA does) use cash prices of oil and meal 

relative to cash price of soybeans as a measure of processing profitability (USDA, Economic 

and Statistics Service, Fats and Oils-Outlook and Situation). A priori, any of the endogenous 

^^Observation horizon is "the length of time between successive obsei-vatlons of the 
data by the researcher" (Merton, 1982, p. 656). 

24Soybean processors produce meal and oil in fixed proportions, and so there are two 
relevant output prices. 
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Table 4.2. Empirical estimates of the average partial elasticities of monthly material input 
use (production), material input purchases, and output sales of U.S. soybean 
processors with respect to selected exogenous variables, 1965:9-1986:12 

Explanatory Variables Endogenous Variables 

Mat. Input Mat. Input Output Sales 

Use Purchases Oil Meal 

Cash prices: soybeans -0.36** -1.91* 

oil 0.50** 

meal 0.12** 

Futures prices: soybeans 0.63 

oil 0.134** 0.48* -0.50** 

meal 0.226** 0,81* • -0.12** 

Interest rate -0.0065** -0.03* 0.009** 0.002** 

Beginning stocks: soybeans -0.241** 

oU -0.0256** 0.015 0.115** 

meal -0.052** -0.044 0.0333** 

*Significant at 5%. 

^^Significant at 1%. 
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variables could be used as a measure of the activity of the firm, and any one or set of the 

explanatory variables as the incentives to which the firm responds. 

To emphasize the differences in relative magnitudes among input use, input purchases, 

and output sales, in Table 4.3 we present short-term total elasticities of these variables with 

respect to prices. Table 4.3 differs from Table 4.2 in that the former includes the indirect effect 

of prices through the impact of input use (production) on input purchases (output sales).25 

The magnitudes of the total elasticities are directly comparable across the endogenous variables 

and show, for example, that soybean cash price causes a much greater change in soybean 

purchases than in soybean use. These elasticities indicate that soybean cash price is in fact the 

single most important factor affecting processors' behavior. Table 4.3 also indicates that in the 

short term processors adjust to changes in cash and futures prices mainly through their soybean 

purchases. 

Monthly elasticities of purchases and sales with respect to own cash prices are larger in 

absolute value than the analogous elasticities with respect to futures. For soybean purchases 

this happens because soybean cash price affects profitability of both storage and crushings, 

while soybean futures influence only returns of soybean storage. The explanation for oil and 

meal sales is that futures have not only a direct impact on sales but also an opposite indirect 

effect through their impact on production. The indirect effect partially offsets the direct one for 

oil (so that total response to own futures price is negative), but it outweighs the direct one for 

meal (leading to a positive total effect). 

^^The rationale for having crushings (production) as an explanatory variable in the 
regression for purchases (sales) is given in Appendix C. 
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Table 4.3. Monthly total elasticities of crushings, purchases, and sales with respect to cash 
and futures prices 

Explanatory Variables Endogenous Variables 

Soybean Use Soybean Output Sales 

(Crushings) Purchases Oil Meal 

Cash prices: soybeans -0.36 -2.20 -0.25 -0.35 

oil 0.50 

meal 0.12 

Futures prices: soybeans 0.63 

oU 0.13 0.58 -0.41 0.13 

meal 0.23 0.98 0.16 0.10 
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Long-term equilibrium elasticities are reported in Table 4.4.26 According to these, in 

the long term the major adjustment mechanism for processors are stocks rather tlian crushings 

(which in long-term equilibrium are identical to purchases and sales). This difference in 

adjustment patterns is even larger when one examines long-term responses to futures prices. 

The long-term elasticity of crushings with respect to futures is either zero or virtually zero, 

while the elasticity with respect to cash prices ranges between 0.53 (meal) and -1.04 

(soybeans). This explains why econometric models that use observation horizons longer than 

one month include cash prices but not futures in the set of variables explaining amounts 

processed. The main long-term impact of futures is on stocks, which are the endogenous 

variables with the worst fit in most econometric systems. 

The results presented above indicate that cash prices are important to explain crushings, 

not because firms ignore futures markets (as is implicitly or explicitly assumed in this literature) 

but because in the long term futures markets mainly influence inventory levels. Models that 

use cash prices when futures quotes are available may be correct in a reduced-form sense, but 

these models will inevitably do a poor job of explaining inventory levels. If one assumes that 

firms ignore futures prices in output decisions, then it is difficult to motivate the use of futures 

prices in inventory decisions. 

Estimation and Derivation of the Empirical Results 

The behavioral hypotheses derived in the section dealing with the theoretical model are 

applicable in the context of the firm's decision horizon. For soybean processors this may be 

roughly estimated as one week (Tzang and Leuthold 1990). The observation horizon we 

26Note that we talk of long term and not of long run, because in the analysis we 
consider crushing capacity as an exogenous variable. 
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Table 4.4. Long-term equilibrium elasticities of endogenous variables with respect to cash 
and futures prices 

Explanatory Variables Endogenous Variables Explanatory Variables 

Crushings (Sales, 

and Purchases) 

Soybean 

Stocks 

Oil 

Stocks 

Meal 

Stocks 

Cash prices: soybeans -1.04* -8.80 -2.72 -1.04 

oU 0.32 0.00 -3.53 0.32 

meal 0.53 1.09 1.40 -3.01 

Futures prices: soybeans 2.62 

oil 0.06 2.30 4.54 0.06 

meal 0.12 2.79 0.31 3.67 

^The derivation of these elasticities is explained in Appendix C. 
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employed in empirical analysis, however, is one month. We did so because data on receipts, 

crushings, and shipments are not available covering periods shorter than one month. On the 

other hand, we did not use quarterly data because the dynamics of the finn's decisions 

becomes more difficult to analyze as the observation horizon lengthens. Averages of cash and 

futures prices tend to converge to each other as the observation horizon lengthens, and the 

same is true of purchases, crushings, and (weighted) sales. Our hypothesis is that this 

convergence hides much useful information on firm behavior. 

The fact that the observation horizon is longer than the decision horizon poses a 

problem. For example, whenever the observation horizon exceeds the decision horizon we 

must include use of material input (Q^) and production (Qj) as explanatory variables in the 

regressions for material input purchases (Sj.) and output sales (P^), respectively.27 But this 

prevents us from using ordinary least squares to estimate the regressions for and P( because 

and are endogenous. Consequently, we do the estimation by means of a simultaneous 

equations model. 

We also include industry crushing capacity (CAP^) as an explanatory variable in the 

regression for crushings. Crushing capacity is expected to be positively related to crushings 

because it limits the amount of soybeans firms are able to process, and it also captures a time 

trend. 

In expressions (4.10)-(4.12) prices always appear as margins: (f^ t+i - r^ p^), 

(ft t+i/'ï' - r^ S(), and (f^.j+j - r^ s^). In the empirical test we directly impose these restrictions 

on prices to avoid multicollinearity, but we use price ratios instead of price differences: 

^t,t+l/(^t Pt)' (^t,t+l/^)/(^t St)' ^•t+l^^'^t ^t)- We use ratios for three main reasons. First, 

they are easy to interpret: the ratios are simply discounted end-of-period rates of return per unit 

Z^See Appendix C for an explanation of this assertion. 
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of material input. In general, the ratios will be around unity, with values higher (lower) than 

unity suggesting profits (losses). Second, with the ratio specification we do not need to 

choose a price index to express the price series in real terms because cash prices are obvious 

deflators.28 Third, the problem of not having delivery positions for all months in the futures 

market is easier to overcome, as discussed below. 

The delivery months for soybean oil and meal in the CBOT are January, March, May, 

July, August, September, October, and December. Hence, in many months we must use 

f{ j+jj (k > 1) instead of fj because fj does not exist.^^ But this implies that the ratios 

for different months are not comparable. For example, the ratio (ft,t+k/'^)/®t' wliich involves a 

return over k > 1 months, cannot be compared with the ratio (ft,t+l/^V^t' which involves a 

one-month return only. This suggests converting them to the same base. We chose an annual 

base for convenience of interpretation of results. Then, the corresponding annualized end-of-

period rates of return are [(fj where k is the number of months between the 

placement of the hedge and the delivery month. This procedure is important because in practice 

the positions most used for hedging not always are the "nearest" ones. For example, in 

February most hedges are placed against the May position instead of the March position, 

therefore the relevant futures price for our purposes is not fFeb,Mar %eb,May 

Soybean processing involves one material input and not one but two outputs in fixed 

proportions: oil and meal. Hence, we had to modify the ratio [(ft,t+k/'^)/^t^^^^ to make it 

suitable to analyze the soybean complex. The ratio used is [(^t+k^^° + ^ 

where superscripts "o" and "m" stand for oil and meal, respectively. This expression should 

be interpreted in the same way as for tlie single-output case, with the difference that its 

28For example, soybeans have accounted for more than 90 percent of the cost of 
producing oil and meal. 

^^Examples of nonexistent f[ [+% are fjan.Feb' ^Mar.Apn ^May.Jun» ^Oct,Nov 
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numerator consists of a composite index of two futures prices of final goods, each one 

weighted by its corresponding production share. 

Following the preceding discussion, the regressions for the soybean complex are 

(4.13) = Q®[RETURNj, 1°, I^, CAP^, lag(Q^)] Soybean Crushings 

(4.14) S(. = SjLRETURN®, RETURN^, , 1°, ij", Q^, lagCS^)] Soybean Purchases 

(4.15) P° = P°[RETURN° 1°, Q°, lag(P°)] Oil Sales 

(4.16) P[" = P["[RETURNJ", I[", Q[", lag(P[")] Meal Sales 

which are to be estimated as a system subject to accounting identities and fixed input-output 

restrictions.30 The variables RETURN^, RETURN^, RETURN® and RETURN^" are returns 

per unit of input corresponding to crushings, soybeans, oil, and meal, respectively.31 In 

particular, coefficients for RETURNS are expected to be significantly different from zero and 

positively related to soybean crushings and purchases but negatively related to oil and meal 

sales. 

The data cover September 1965 through December 1986. The period analyzed ends in 

1986 because in recent years the processing sector suffered a profound concentration, raising 

doubts regarding its competitive performance (see Consultants International Group et al. 1986, 

Bertrand 1988). All prices and quantities for the soybean complex are expressed in dollars per 

30See Appendix C for the precise specification of the identities and restrictions. 

3^The actual expressions for RETURN variables are given in Appendix C. 
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short ton and millions of short tons, respectively. Cash prices are quotations FOB Decatur 

published by the USDA, and data on crushings, receipts, and shipments are those reported by 

the U.S. Bureau of the Census.32 Data sources for crushing capacity are USDA's Fats and 

Oils-Outlook and Situation, Consultants International Group et al., and the Statistical Annual 

of the CBOT for the most recent years. These sources only report crushing capacity at the 

beginning of October, hence capacity for the remaining months was approximated by linear 

interpolation. Interest rate is the prime rate reported by the USDC's Survey of Current 

Business. Finally, futures prices employed in the regressions are the average of the highest 

and lowest futures prices in each month for the selected delivery positions from the Statistical 

Annual of the CBOT. 

The fixed input-output coefficients estimated from the monthly data are 0° = 5.537 and 

O*" = 1.263. The coefficients of variation for 0° and are only 2.35 percent and 0.85 

percent, respectively, lending strong support to the assumption that soybean processing is 

characterized by a Leontief production function. Using these empirical input-output 

coefficients, we estimated the system of equations (4.13)-(4.16) by means of full information 

maximum likelihood.33 We fitted linear and logarithmic specifications of the system and 

obtained very similar results, particularly regarding the explanatory power of RETURNS. To 

save space, we report only results of the logarithmic form (see Table 4.5). We preferred this 

over the linear specification because it had a slightly better fit, and in addition the coefficients 

are the respective elasticities, which facilitates the interpretation of the results. The goodness-

32Note that available data correspond to receipts and shipments instead of actual 
purchases and sales, so that we assume that receipts and shipments are identical to purchases 
and sales, respectively. 

33we employed full infonnation maximum likelihood because some disturbances 
exhibit significant autocorrelation, thus rendering incorrect the use of instrumental variables 
(Johnston, 1984, p. 366). 
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Table 4.5. Estimated system of equations for U.S. soybean processors employing 
RETURN variables, 1965:9-1986:12 

Explanatory Variables Endogenous Variables 

ln(Soybean 

Crushings) 

ln(Soybean 

Purchases) 

ln(Oil 

Sales) 

In (Meal 

Sales) 

Intercept -0.261 -0.12 -0.106 0.062 

(-5.02)*** (-1.09) (-3.12)** (6.10)** 

In(RETURN): crushings 0.075 0.27 ad hoc ad hoc 

(3.10)** (2.35)* 

soybeans ad hoc 0.13 ad hoc ad hoc 

(1.15) 

oil ad hoc ad hoc -0.105 ad hoc 

(-4.37)** 

meal ad hoc ad hoc ad hoc -0.0247 

(-3.74)** 

ln(beg. stocks): soybeans ad hoc -0.241 ad hoc ad hoc 

(-5.71)** 

oil -0.0256 0.015 0.115 ad hoc 

(-2.92)** (0.66) (5.77)** 

meal -0.052 -0.044 ad hoc 0.0333 

(-4.72)** (-1.18) (5.43)** 

^t statistics are shown in parenthesis. 

*Significant at 5%. 

**Significant at 1%: 
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Table 4.5. continued 

Explanatory Variables Endogenous Variables 

ln(Soybean 

Crushings) 

ln(Soybean 

Purchases) 

ln(OU 

Sales) 

In (Meal 

Sales) 

ln(crushings) 

ln(production): oil 

meal 

ln(crushing capacity) 

ln(lagged endog.): lag 1 

lag 2 

Dummy: February 

March 

April 

0.291 

(7.80)** 

0.874 

(18.94)** 

-0.102 

(-2.40)* 

-0.080 

(-4.70)** 

0.072 

(4.53)** 

-0.047 

(-2.98)** 

0.78 

(7.13)** 

0.422 

(8.27)** 

0.697 

(16.43)** 

0.9665 

(100.34)** 
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Table 4.5. continued 

Explanatory Variables Endogenous Variables 

ln(Soybean ln(Soybean ln(Oil In (Meal 

Crushings) Purchases) Sales) Sales) 

Dummy: May 0.039 

(2.56)* 

June -0.062 

(-4.28)** 

September -0.069 

(-5.86)** 

October 0.178 

(9.96)** 

0.59 

(5.63)** 

December 0.047 

(3.06)** 

AUTOC. COEFF.: t-1 0.362 

(4.50)** 

• -0.225 

(-3.31)** 

t-2 0.280 

(4.74)** 

t-3 0.331 

(4.43)** 

t-12 0.446 0.174 

(7.34)** (2.48)* 
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Table 4.5. continued 

Explanatory Variables Endogenous Variables 

ln(Soybean ln(Soybean ln(Oil In (Meal 

Crushings) Purchases) Sales) Sales) 

STATISTICS: 

0.962 0.933 0.958 0.990 

Mean value of dep. variable 0.745 0.668 -0.967 0.512 

Std. error of regression 0.0509 0.147 0.0536 0.0235 

SYSTEM STATTSNCS: 

RP = 0.998 Log Likelihood Function = 1214.31 Observations = 242 
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of-fit statistic for the logarithmic system is R^ = 0.998.34 The R^s for the individual 

equations range from 0.933 to 0.990.35 

We employed the coefficients reported in Table 4.5 to obtain Tables 4.2 and 4.3, by 

taking an average of0° = 5.537,= 1.263, + Çt+k/^"") = 0.372, 

(^+k/'^'")/((t+k/^° + Çt+k/^*") = 0.628, k = 4.787, h = 4.918, and r^ = 1.095. Then, for 

example, partial elasticity of input purchases with respect to oil futures price is 

(0.27 k 0.372) = 0.48, and total elasticity of oil sales with respect to soybean cash price is 

(-0.075 k 0.697) = -0.25. 

We included monthly dummy variables in the regression for soybean crushings to 

model the seasonal pattem.36 in the equation for soybean purchases we modeled seasonality 

by means of a twelve-month correlation structure in the error, plus a dummy variable 

accounting for October. October marks the beginning of the crushing year, and purchases are 

abnormally high compared to other months: October accounted for at least 15 percent of annual 

purchases during the period 1965/66-1985/86, with the only exception of year 1984/85 in 

which that percentage was 11.8. In the equation for meal sales the seasonal pattern was 

9 9 
34The statistic is the pseudo R introduced by Baxter and Cragg (1970). This is 

defined as 

= 1 - exp[2 (L(g - L^^^)/N] 

where L^, is the maximum of the log likelihood function when only intercepts are used, 

is the maximum of the log likelihood function when all coefficients are included in the model, 
and N is the number of observations. 

35The R^ for each Individual equation was calculated as suggested by Maddala (1988), 
by taking the squared correlation between predicted and actual endogenous variables. 

36For example, the dummy variable February equals 1 if t = February, and equals 0 
otherwise. 
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captured by autocorrelation coefficients at lags 3 and 12. Both the equations for oil and meal 

sales exhibited significant first-order autocorrelation, and the equation for oil sales also had 

significant second-order autocorrelation. 

Crushing capacity is a highly significant explanatory variable of the amount of 

soybeans processed. The short-run elasticity of crushings with respect to capacity is 0.291. 

Although this value is apparently low, it yields a long-term equilibrium elasticity of 0.84.37 

The long-term elasticities of soybean and meal stocks with respect to capacity have reasonable 

magnitudes (0.68 and 0.84, respectively), but that of oil stocks (e.g., 2.19) seems radier high. 

This is mostly due to the accumulation of oil stocks diat occurred at the same time that the 

processing industry expanded its crushing capacity.38 

As hypothesized, beginning inventories of final goods have a significantly positive 

impact on their respective sales, while beginning stocks of soybeans have a significantly 

negative effect on material input purchases. The corresponding total elasticities, however, are 

very low: -0.017 for meal sales, 0.098 for oil sales, and -0.241 for soybean purchases (see 

Table 4.3).39 in addition, the empirical findings indicate that quantity processed is negatively 

related to beginning inventories of oil and meal, suggesting that production and output storage 

are not separated in the U.S. soybean-processing sector. It is this negative effect of beginning 

meal inventories on crushings that is accountable for the negative total elasticity of meal sales 

with respect to beginning meal stocks. 

^^The mediodology to obtain long-temi elasticities from structural parameters reported 
in Table 4.5 is explained in Appendix C. 

SBpor example, the ratio of oil stocks to montiily crushing capacity averaged 4 percent 
in 1967:10/1975:9,7 percent in 1975:10/1980:9, 13 percent in 1980:10/1983:9, and 7 percent 
in 1983:10/1986:9. In the same periods the average monthly crushing capacities were 2.2, 
3.2, 3.7, and 3.5 million short tons, respectively. 

^^Notice that the total elasticities of oil and meal sales with respect to their own 
beginning stocks include the indirect effect of beginning stocks on oil and meal production. 
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The most important empirical result regarding our theoretical model is that the 

RETURN variables had the hypothesized effects and were significant. The equation for 

soybean purchases is the only one in which RETURNS seem to have little or no explanatory 

power.. This is due to multicollinearity, caused by high correlation between RETURNS for 

crushings and soybeans. Proof of this is that deleting RETURN^ from the equation for 

soybean purchases yields a coefficient for RETURN^ equal to 0.357 with a t statistic of 4.62. 

Similarly, if we delete instead RETURN^ from the same equation, the coefficient for 

RETURN^ becomes 0.294 with a t statistic of 3.96. 

The variables indicated as ad hoc are those that could be included in an ad hoc model of 

the sector, but which are not predicted by the theoretical model. The ad hoc variables were 

excluded from the system reported in Table 4.5. To test if the ad hoc variables have any 

explanatory power we ran an unrestricted version of the model which had all these additional 

variables. The resulting likelihood ratio was 24.14 with 16 degrees of freedom, while the 

2 
critical Xi6*0 05 26.30. This indicates that the null hypothesis that all of the coefficients 

pertaining to the ad hoc variables are not significantly different from zero could not be rejected. 

Of these ad hoc variables, the only one that was significantly different from zero at tiie 5 

percent level (t = -2.14) was beginning stocks of soybeans in the regression corresponding to 

oil sales, but its coefficient was negative. Clearly, this relationship should be positive 

(assuming that oil and soybeans compete for storage resources), or insignificant (as predicted 

by the theoretical model). Interestingly, had we begun by searching the data for variables that 

were significant and of the correct sign, we would with two exceptions (oil and meal stocks did 

not significantiy influence soybean purchases) have arrived at tlie model structure predicted by 

the theory. 
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Price Expectations 

An interesting question that arises is how well the system of equations estimated by 

means of the RETURN variables compares against systems employing expected prices rather 

than futures. To answer it we estimated similar regressions, using indexes reflecting perfect 

foresight and naive price expectations (PERFORs and NAIVEs, respectively) instead of 

RETURNs.^0 The results using PERFOR and NAIVE variables are reported in Tables 4.6 

and 4.7, respectively. 

The statistical significance of the RETURN coefficients is even more evident in Tables 

4,6 and 4.7. In the case of the perfect foresight index, the only coefficients significantly 

different from zero at the 5 percent level are those corresponding to the equations for soybean 

crushings and purchases. At the 1 percent level of significance only the soybean PERFOR 

coefficient is different from zero. Moreover, one of the significant coefficients has the wrong 

sign (i.e., crushing PERFOR in soybean purchase equation). For naive expectations all the 

coefficients corresponding to NAIVE variables have the correct signs, but none of them is 

significantiy different from zero at the 5 percent level of significance. In addition, the systems 

estimated by means of the PERFOR and NAIVE variables had more problems of 

autocorrelation in the residuals. In the case of the PERFOR system, it was necessary to 

incorporate lagged endogenous variables in the oil and meal regressions. In the PERFOR 

system we had to include a lagged endogenous variable in the meal regression, and a third-

order autocorrelation coefficient in the oil regression. In summary, it is clear that the two 

models fitted with price expectation indexes have poorer explanatory power than the one using 

futures prices. This means that soybean processors use futures markets to make their physical 

decisions. 

^The precise definition of the PERFOR and NAIVE variables is given in Appendix C. 
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Table 4.6. Estimated system of equations for U.S. soybean processors employing 
PERFOR variables, 1965:9-1986:12 

Explanatory Variables Endogenous Variables 

ln(Soybean ln(Soybean ln(Oil ln(Meal 

Crushings) Purchases) Sales) Sales) 

Intercept -0.271 -0.19 -0.275 0.046 

(-5.14)**^ (-1.77) (-3.97)** (4.03)** 

ln(PERFOR): crushings 0.0161 

(2.34)* 

-0.063 

(-2.10)* 

soybeans 0.092 

(2.84)** 

oil -0.0086 

(-1.31) 

meal 0.0010 

(0.52) 

ln(beg. stocks): soybeans -0.222 

(-5.31)** 

oU -0.0298 -0.018 0.136 

(-3.44)** (-0.79) (5.62)** 

meal -0.048 -0.050 0.0221 

(-4.12)** (-1.26) (3.57)** 

^t statistics are shown in parenthesis. 

^Significant at 5%. 

^^Significant at 1%. 
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Table 4.6. continued 

Explanatory Variables Endogenous Variables 

ln(Soybean 

Crushings) 

ln(Soybean 

Purchases) 

ln(Oil 

Sales) 

In (Meal 

Sales) 

In(crushings) 

ln(production): oil 

meal 

ln(crushing capacity) 

ln(lagged endog.): lag 1 

lag 2 

Dummy: February 

March 

April 

0.291 

(7.51)** 

0.912 

(21.89)** 

-0.122 

(-2.89)** 

-0.081 

(-4.76)** 

0.077 

(4.90)** 

-0.051 

(-3.20)** 

0.83 

(7.47)** 

0.428 

(8.19)** 

0.662 

(13.16)** 

-0.208 

(-4.62)** 

0.920 

(43.31)** 

0.050 

(2.10)* 
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Table 4.6. continued 

Explanatoiy Variables Endogenous Variables 

ln(Soybean ln(Soybean ln(Oil In (Meal 

Crushings) Purchases) Sales) Sales) 

Dummy: May 0.042 

(2.96)** 

June -0.064 

(-4.11)** 

September -0.070 

(-6.19)** 

October 0.198 

(12.92)** 

0.70 

(6.71)** 

December 0.047 

(3.03)** 

AUTOC. COEFF.: t-1 0.668 

(10.39)** 

-0.258 

(-3.84)** 

t-3 0.209 

(3.60)** 

0.326 

(4.36)** 

t-12 0.497 

(8.76)** 

0.161 

(2.24)* 
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Explanatory Variables Endogenous Variables 

ln(Soybean ln(Soybean ln(Oil ln(Meal 

Crushings) Purchases) Sales) Sales) 

STATISTICS: 

0.961 0.930 0.957 0.990 

Mean value of dep. variable 0.745 0.668 -0.967 0.512 

Std. error of regression 0.0510 0.151 0.0541 0.0239 

SYSTEM STATISTICS: 

= 0.997 Log Likelihood Function = 1197.33 Observations = 242 
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Table 4.7. Estimated system of equations for U.S. soybean processors employing NAIVE 
variables, 1965:9-1986:12 

Explanatory Variables Endogenous Variables 

ln(Soybean ln(Soybean ln(Oil ln(Meal 

Crushings) Purchases) Sales) Sales) 

Intercept -0.252 -0.14 -0.290 0.041 

(-4.57)**̂  (-1.13) (-4.38)** (3.50)** 

ln(NArVE): crushings 0.0065 

(0.89) 

0.035 

(1.85) 

soybeans 0.60 

(1.15) 

oil -0.70 

(-1.69) 

meal -0.068 

(-0.97) 

ln(beg. stocks): soybeans -0.225 

(-5.02)** 

oU -0.0267 0.004 0.083 

(-2.88)** (0.17) (4.43)** 

meal -0.047 -0.019 0.0213 

(-3.79)** (-0.46) (3.59)** 

^t statistics are shown in parenthesis. 

^Significant at 5%. 

**Significant at 1%. 
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Table 4.7. continued 

Explanatory Variables Endogenous Variables 

ln(Soybean 

Crushings) 

ln(Soybean 

Purchases) 

ln(Oil 

Sales) 

In (Meal 

Sales) 

ln(crushings) 

ln(production): oil 

meal 

ln(crushing capacity) 

ln(lagged endog.): lag 1 

lag 2 

Dummy: February 

March 

April 

0.263 

(6.74)** 

0.950 

(22.13)** 

-0.142 

(-3.42)** 

-0.080 

(-4.88)** 

0.083 

(5.11)** 

-0.051 

(-3.16)** 

0.90 

(7.59)** 

0.421 

(7.60)** 

0.605 

(13.88)** 

0.916 

(43.01)** 

0.049 

(2.13)*. 
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Table 4.7. continued 

Explanatory Variables Endogenous Variables 

ln(Soybean ln(Soybean ln(Oil In (Meal 

Crushings) Purchases) Sales) Sales) 

Dummy: May 0.047 

(3.16)** 

June -0.061 

(-4.17)** 

September -0.068 

(-5.75)** 

October 0.207 

(14.20)** 

0.68 

(6.23)** 

December 0.046 

(2.78)** 

AUTOC. COEFF.: t-1 0.348 

(4.77)** 

-0.266 

(-3.95)** 

t-2 0.254 

(4.12)** 

t-3 0.194 

(3.02)** 

0.317 

(4.23)** 

t-12 0.517 0.160 

(9.29)** (2.20)* 
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Table 4.7. continued 

Explanatory Variables Endogenous Variables 

ln(Soybean 

Crushings) 

ln(Soybean 

Purchases) 

ln(Oil 

Sales) 

In (Meal 

Sales) 

STATISTICS: 

0.960 

Mean value of dep. variable 0.745 

Std. error of regression 0.0519 

SYSTEM STATISTICS: 

0.929 0.957 0.990 

0.668 -0.967 0.512 

0.151 0.0547 0.0238 

= 0.997 Log Likelihood Function = 1189.56 Observations = 242 
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It is important to note that the NAIVE variables represent cash-cash marketing margins, 

which are the central paradigm in the analysis of marketing industries (Lence, Hayes, and 

Meyers 1992).41 Our results support the conclusions by Lence, Hayes, and Meyers, who 

state that "futures prices and their relationship with cash prices seem to be important factors 

affecting processing decisions." In addition, our findings provide evidence that using cash-

cash marketing margins to study market performance and economic behavior of marketing 

firms in the presence of futures markets is inappropriate. 

Conclusions 

The analysis provides evidence that in the short run purchases and processing of 

material input and production and sales of final product should, and do, respond to different 

explanatory variables and in different ways than is commonly accepted. We achieve these 

results by introducing the realistic assumption that firms make production, purchasing, and 

selling decisions in order to take advantage of cash and forward price differentials, while 

hedging the inherent risk in forward markets. Although the focus of our study is on short-run 

(monthly) behavior, the results show that inferences made about long-term firm behavior 

derived by aggregating over short-term decisions are different in some respects from the 

inferences one would draw from medium- or long-run models. 

The model presented is capable of identifying the individual effect of each cash and 

forward price on purchases, processing, and sales. In the particular industry studied (U.S. 

soybean processing), we found that the cash price of the material input (soybeans) is in general 

the single most important price affecting processors' decisions. We also found that even 

Cash-cash marketing margins are the relationship between cash prices of final 
product and material input measured at the same point in time. 
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though in the short term material input use (i.e., soybean crushings) is not affected by cash 

prices of output (i.e., oil and meal), in the long term crushings are almost as responsive to 

these as to soybean cash prices. In contrast, the impact of the output futures price on 

processing is noticeable in the short term, but it is almost negligible in the long term. These 

results may help explain why studies employing annual data generally use cash prices but not 

futures to model the supply of processing services. The major effect of futures prices is on 

purchases and sales in the short term and on stocks in the long term. The results also show 

that soybean processors respond more logically to futures prices than they do to prices formed 

by naive expectations or even perfect foresight. 
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CHAPTER V. SUMMARY AND CONCLUSIONS 

In this study we analyze the behavior of a forward-looking expected-utility-maximizing 

competitive firm and examine how it compares with an otherwise identical myopic firm. 

We first address the case of a speculative storing firm in the absence of forward 

markets. This model characterizes speculative firms storing a commodity, and speculative 

holders of stocks, bonds, and other nontransformable assets. In this scenario, changes in 

beginning inventories, in current price, or in the interest rate cause wealth changes and 

consequently modify the firm's risk behavior unless the utility function is CARA, Wealth 

fluctuations do not alter risk behavior if the firm is CARA for both forward-looking and 

myopic attitudes; in this instance we can show that storage is negatively associated with current 

cash price and the interest rate, and that it is independent from the level of beginning stocks. In 

contrast, if the firm is DARA or lARA, the storage response to the mentioned variables is 

generally ambiguous. 

By restricting the firm's utility to be CARA, we can show that the forward-looking 

reservation price is higher than the risk-neutral one if (a) the next-date price is independentiy 

distributed fi-om all posterior prices, or (b) the decision maker is sufficiently absolute risk-

averse, or (c) the price follows a stationary autoregressive process and the agent is sufficiently 

forward looking. Therefore, the forward-looking CARA firm is willing to hold inventories at 

levels where the discounted expected next-date price is less than the current price plus marginal 

storage cost It follows that the forward-looking CARA firm will store more than the risk-

neuOral one at sufficiently low storage levels. These results are in shaip contrast to myopic 

risk-averse behavior. We show, however, that at sufficiently high storage levels risk-neutral 

storage exceeds forward-looking CARA storage. These findings may explain the ambiguous 



www.manaraa.com

93 

response of forward-looking CARA storage to changes in the next-date expected price, in the 

next-date mean-preserving price spread, or in the degree of absolute risk aversion. 

The behavioral differences between myopic risk-averse and forward-looking CARA 

firms are attributable to the fact that the first cares only about revenue risk, whereas the second 

is concerned about both revenue and input cost risks. The myopic firm acts as if it intends to 

exit the market at the current cycle's end, and therefore dismisses the possibility of buying 

product to store in the future. For such a firm, the only risk effect of storage is adding revenue 

risk. In contrast, the forward-looking firm plans to stay in the market after tlie current storage 

cycle, so it takes into account the possibility that at the next decision date it may be optimal to 

buy product to store. Because of this, for the forward-looking firm current storage not only 

increases revenue risk but also lowers cost risk. This means that the forward-looking firm may 

be willing to hold inventories even if the one-period expected return from storage is negative. 

The forward-looking CARA model of speculative storage explains real-world 

observations that are not compatible with myopic risk-averse behavior. For example, firms 

practice sequential marketing, hold output and/or input reserves, and spread transactions over 

time. 

When the speculative storing firm is allowed to trade forward, its behavior changes 

substantially. The firm separates storage decisions from hedging decisions. Storage is 

independent from the subjective joint distribution of random variables and from the decision 

maker's degree of risk aversion. If positive, optimal storage is such that the discounted current 

forward price equals the current cash price plus the marginal storage cost, independent of 

forward-looking or myopic behavior. Forward-looking and myopic attitudes, however, are 

reflected in the optimal hedging decisions. The optimal hedge for a myopic risk-averse firm 

that perceives the forward price to be unbiased is the full hedge; i.e., selling forward the entire 

quantity stored. In contrast, the optimal forward-looking hedge under an unbiased forward 
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price generally will differ from the full hedge and will depend on the firm's degree of risk 

aversion. Moreover, if the forward-looking firm is CARA and (a) the next-date cash price is 

independently distributed from the next-date forward price and from all posterior (cash and 

forward) prices, or (b) the agent is sufficiently absolute risk-averse, then its optimal hedge 

under an unbiased forward price will be smaller than the full hedge. 

The optimal forward-looking CARA hedge under an unbiased forward price is smaller 

than the full hedge because the forward-looking firm assigns a positive probability that it will 

store at the next trading date. Next-date storage is negatively correlated with next-date cash 

price, and therefore next-date storage eliminates part of the risk of next-date cash price. Hence, 

next-date storage is a substitute for current hedging, thus reducing the size of the hedge 

required to minimize the risk of next-date cash price. These results regarding the optimal 

forward-looking hedge offer an alternative explanation of the stylized fact that farmers do 

hedge their entire grain stocks. Our findings are also relevant for empirical research concerned 

with the empirical estimation of optimal hedges in the presence of futures markets rather than 

forward markets. 

By restricting the firm's production function to be nonstochastic Leontief, the 

speculative storage scenario can be readily modified to model a productive nonstoring finn. If 

output and material input cash prices are positively related, most of the findings for the 

speculative storage framework follow by noting that the firm's activity is "production" rather 

than "storage." Also, the rationale for the results derived for the productive nonstoring finn is 

completely analogous to that for speculative storage. 

Among the main results from the productive nonstoring scenario is that the forward-

looking CARA firm will produce more than the risk-neutral one at sufficiently low output 

levels, and less at sufficiently high levels of production. This finding has important 

implications. For example, the finn's production response to risk has been assumed 
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traditionally to be the same at all output levels. This may bias empirical results towards 

rejection of the hypothesis that risk affects the behavior of the firm. Also, relaxing the myopic 

constraint seems particularly relevant for studies simultaneously involving rational expectations 

and risk aversion. 

In the final analysis we present the most general model, in which firms are allowed to 

produce and to store and trade forward both output and material input. The most important 

result from this setting is that "physical" decisions are separated from hedging decisions; i.e., 

separation holds regardless of forward-looking or myopic behavior. Physical decisions are 

independent from the firm's degree of risk aversion and from the subjective joint distribution of 

random variables. 

All physical decisions are shown to depend only on current forward prices and cash 

prices, the interest rate, and the storage and production cost functions. Because of this and the 

independence from hedging, the main behavioral hypotheses regarding physical decisions are 

readily testable empirically. We employed monthly data from the U.S. soybean-processing 

industry to test the theoretical model advanced, with the results strongly supporting the model. 

The results also show that soybean processors respond more logically to futures prices than 

they do to prices formed by naive expectations or even perfect foresight. The empirical results 

are particularly important because our model allows us to better understand the short-term 

behavior of the firm and to derive meaningful long-term response parameters from short-term 

parameter estimates. 
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APPENDIX A. APPENDIX TO CHAPTER H 

Derivation of FOC (2.7) 

The FOCs corresponding to the Lagrangian for t < T are 

a£t 
(Al) _-E, 

aMt+i(Wx,et+i) aij+i 

dl t+1 ap 

plus (2.8). But note that 

+ ^t^t+l ^T-2 '"T-l fPt + ' (')] Mj'(Wj, e^) - Tit 

(A2) 

(A3) 

31, t+1 

aPt 

Mh-1 

31, 

=  - 1  

= 1 

Also, 

(A4) ^'^•(WT.e.) 

ait 

aMt+i(WT,et+i) ait+1 

ai, t+1 ai t J 

- rj rt+2 ... tj,2 ̂ T-I ''(•) M^XWy, e^) + 

= rj rj+i ... rj.2 ̂ T-l Pt MtXWj, ê ) 

where the second equality in (A4) is obtained by using expressions (Al) through (A3). It 

follows from (A4) that 
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3Mf 11 (Wti Gf+i) 
(A5) = r^+2 • • • rT-2 ^T-1 Pt+1 ̂ t+l'(^T' ®t+l) 

31, t+1 

Substitution of (A2) and (A5) into FOC (Al), and rearrangement, yields expression (2.7). 

Derivation of FOC (2.9) 

For the risk-neutral firm, the dynamic programming algorithm is analogous to (2.3) but 

with W'p instead of U(W'p). Therefore, the FOCs corresponding to the terminal date T are 

3£T 
(A6) —— = (p-p + ;') - TiY = 0 

3£'r BE'r 
(A7) = I-p - Py = 0, Tij > 0, Tij = 0 

and optimal terminal sales are Pj = ly. For any period t < T, FOCs are as follows: 

3£{ 
(A8) ^ = E, 

dPt 

aMt+i(WT, ct+i) aij+i 

ai t+1 ap t J 
+ rjr^+i ... rT.2 rj-l [Pt + '"( )] " 'Ht = 0 

plus (2.10). But (A2) and (A3) still apply, and the expressions analogous to (A4) and (A5) 

are, respectively. 

(A9) ^M,(WT,e.) 

9lt 

aMt+i(WT, Cj+i) aij+i 

ai, t+1 31. 
-rtrt+i ... rrY.2Tj.i /'(•) +Tit 

= rtrt+i ... rj.2rT.i p^ 

CAim ^^t+l(WT, Ct+i) 
(AlO) — =^(+1 rt+2 ••• ^T-2 '"T-l Pt+1 

31, t+1 
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Expression (2.9) is obtained by replacing (A2) and (A 10) into FOC (A8). 

Proof of Propositions 2.1 and 2.2 

The Lagrangian multiplier vanishes (IIQ = 0) if storage is positive (IJ = IQ - PQ > 0). 

Comparative statics can be obtained by totally differentiating FOC (2.7) as expressed in 

(A 11)42 

(All) £p = Eo{[ro (po + '"(Iq " ̂ 0^) " Pi] Mj'CW-p, ej)} = 0 

BPn £px 
and then calculating the effect of any variable x on sales as = - 7— . The derivatives of 

3x ^PP 
£p are:43 

(A12) £pp = ri ... rT.i EgfErQ (pg + 0 - pj]^ MI"} - tq i" Mq' < 0 

(A13) £pp = rg ... rj.j Pg EQ([rQ (pg + /') - pj] Mj"} + rg Mg' ^ 0 

(A 14) £pj. = rj ... r^.i (pg Pg - /) Eg{[rg (pg + /') - pj Mj"} + (pg + /") Mg' ^ 0 

(A 15) £pi = rg ... r-p.j pg Eg([rg (pg + /') - Pj] Mj"} - £pp^ 0 

42to make notation less cumbersome, in this section we use £p to denote 3£j/3P[. The 
meaning of the remaining derivatives should be clear from the context. 

43TO simplify notation, whenever we refer to fp^ and £pg we assume they are 
evaluated at CTg j = 1. 
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(A 16) £p|x = ri ... EQ{[rQ (pg + /') - p^] Pj M^"} - Mq'^O 

(A17) £pjy = ri ... rj.i Eo{[ro (po+ 0-Pi] Pi (Pi - Ho.l) ^l") 

- Eo((pi - IIqj) MJ'} ^ 0 

The sign of EQ{[rQ (pg + /') - pj] Mj"} is ambiguous in general, but for CARA or myopic 

firms it can be inferred. 

For CARA firms we have 

(A18) EQ{[rQ (pq + 0 - pj] Mj"} = - X, Egdrg (pg + 0 - Pil Mj'} = 0 

by FOC. Hence, £pp = rg Mg' > 0, £pj. = (pg + /') Mg' > 0, and £pj = - £pp > 0. Also, 

from £pp > 0 it follows that BPj/Bpj > 0 for CARA. Then: 

(A19) Eg{[rg (pg + i ' )  - pj] Pj Mj"} = X  Eg{[rg (pg + i ' )  - pj] (P^ - Pj) M { }  > 0 

where Pj^ is a constant equal to Pj when p^ equals [rg (pg + /')]. Expression (A 19) is 

nonnegative because Mj' > 0, and (Pj^ - Pj) is positive (negative) whenever [rg (pg + /') - p^] 

is positive (negative). Therefore, £p^ ̂  0 even for the CARA firm. The sign of fp^y is also 

ambiguous in general; for example, Eg[(p2 - pgj) Mj'] = Cov(p2, M j') may be positive or 

negative for CARA forward-looking firms, as inferred from the proof of Proposition 2.4. 

For myopic firms, we have date 0 = T-1 and Pj = Ij = Ij. Therefore, 

(A20) Eg{[rg (pg + /') - pj] Mi"} = Eg{[rg (pg + /') - pj] (A.^ - ?i) Mj'} =0 if CARA 
< 0 if DARA 

> 0 if lARA 
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r< 0 if DARA 
(A21) Eo([ro (PO + 0 -PI] PI MI"} =II EgfEro (Pq + 0  -  PIL MI"} = 0 if CARA 

l> 0 if lARA 

(A22) EQ([rQ (po + i ' )  -  Pi] Pi (pi - |io,l) Mi") = - Ii EQ{[rQ (pg + /') - Pi]^ Mi"} 

f> 0 if DARA or CARA 
-Il [jio,l-ro(Po + 0]Eo{[r o ( p o  +  0 - P i ] M i " } | ^  ^  i a r A  

where is a constant equal to X when pi equals [rg (pg + /')]• The sign of (A20) follows 

because Mi' > 0, and for DARA - X) is positive if [rg (pg + /') - Pil is negative, and vice 

versa. For IARA we have - X) positive (negative) when [rg (pg + /') - Pi] is positive 

(negative). Therefore, for a myopic firm we have 

r> 0 if DARA and Pg < 0; or if IARA and Pg ^ 0 
(A23) £pp . 

^ 0 if DARA and Pg > 0; or if IARA and Pg < 0 

f> 0 if DARA and pg Pg < /; or if IARA and pg Pg > i  
(A24) £pr \> 

[ < 0 if DARA and pg Pg > i ;  or if IARA and pg Pg < i  

[< - £pp if DARA 
> - £pp > 0 if IARA (A25) £pi 

f< 0 if DARA or CARA 
(A26) £pp. g 

r> Gif DARA 0 
(A27) £p(J g 

>0 if DARA or CARA 
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To show the effect of the degree of absolute risk aversion on the myopic firm, take two 

firms A and B such that > A,g(W'p) for all W'p.44 Rewrite FOC corresponding to 

firm A as: 

r0(P0+'') MiA'(WT) 
(^28) J MiA'(Wk) ^^0(P0 + '')-Pl]/'l(Pl)^Pl 

T Mia'(WT) 
+ fo ("0 + 0  - Pii m(pi) " P i  = 0 

where Wj^ is terminal wealth corresponding to pj = rg (pg + /'). Equality (A28) is satisfied at 

firm A's optimum sales level (PQA)- For firm B, a similar expression to (A28) evaluated at 

PQAÎS 

r0(P0+'') Mib'(WT) 
(A29) j MiB'(Wk) ^^O^PO Pi] Pl^Pl^^Pl 

T Mir'(WT) 
" roU«-) MliWi? (PO ^ - Pll Pl(P,) </Pl < 0 

Negativity of expression (A29) can be proven as follows. Subtract (A28) from (A29) to get 

'•0(P0+'') MIB'(WT) MIA'(WT) 
(^30) j [ MiB'(Wk) • MiA'(Wk) ] ['•0(P0 + '")-Pi]Pi(Pi)rfpi 

T MIB'(WT) MIA'(WT) 
ro(pi+/') ^ MiB'(Wk) ' MiA'OVk) ^ ['o(PO + n-Pi]Pi(Pi)r/pi 

Terminal wealth is higher the higher next-date price because the firm is myopic. Hence, 

44This proof follows Holthausen's methodology. 
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WR > WF in the first integral, and WJ^ < Wj in the second integral. Applying inequality (20) 

in Pratt (1964), it follows that the tenn involving ratios is negative in the first integral, and 

positive in the second integral. Also, the term [rg (pg + /') - p^] is positive in the first integral, 

and negative in the second. Therefore, both integrals are negative, (A30) is negative, and 

(A29) must be negative. We conclude that firm B's optimum sales (PQB) must be lower than 

PQA because firm B's FOC is negative when evaluated at PQ^. Hence, for myopic firms we 

have Pqa > Pqb ^A > ̂ B-

The degree of absolute risk aversion has an ambiguous effect on forward-looking sales, 

even for CARA firms. This can be inferred from the preceding paragraph because Wj^ ^ Wy 

in either integral of (A30) if firms are forward-looking. Therefore, (A30) has an ambiguous 

sign, and forward-looking sales may increase or decrease with the degree of absolute risk 

aversion. 

Comparative statics for storage follow by applying the identity = Ij - P^. 

Example of Optimum Myopic CARA Storage 

If the firm is CARA, then 

(A31) U(Wj) = -exp[-A, (r.j rg rj ... ry.^ W.j + rg r^ ... rj.j TTg + r^ ... rj.i rcj 

+ ... +rj.2 Tt'p.j + Tty)] 

= exp(-A, r.j rg rj ... r-p.^ W.j) exp(-X rg r^ ... JTg) 

exp(-A,r2 ... r-p.^ ... exp(-lr'p_i Tr-p.i) [-exp(-A, rt^)] 
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where exp(x) denotes the base of natural logarithms raised to the power x. The optimization 

problem may be expressed as^^ 

(A32) rnaxpg^gEoEUCW-p)] = exp(-X r.j rg r^ ... r-j-.i W.^) 

maxpo<io{exp(-Xro r^ ... r^.j ttq) EQ[maxp^<i^exp(-% ... r^.j TTJ) 

... maxp^_^<j^_^(exp(-?irT.i jr^.i) EY_i(maxp^<][^(-exp(-X Tty))))]) 

But the first term in the right-hand side of (A32) does not affect the solution, and 

^t+1 - ̂t-1 " ̂ t-l* know that Py = is optimal [see FOCs (2.4) and (2.5)]. 

Therefore, an alternative specification of (A32) is 

(A33) maxij>oEo[U(WT)] = maxij>o{exp(-Xtq rj... r^.i TTQ) 

Eo[maxj2>o(exp(-A,rj ... r-j-.i Tt^) 

... maxj^>o(exp(-Xr'p.2 Kq-.j) EY_i(-exp(-A,py Ij))))]} 

Optimum beginning inventories at date T are obtained by solving the corresponding 

Kuhn-Tucker conditions for ly, i.e.. 

45See Bertsekas (1976). 
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3£'T_I 
(A34) —— = -X exp(-A, ry. j Tt^-l) ®T-1 ( [PT " ̂ T-1 (PT-1 + ' )] [-exp(-X pj ly)]} < 0, 

31 

I^>0,It =0 
3It 

where = exp(-X, r^.^ Tt^-l) ]E'p_i[-6xp(-X py I^)]. Under the adopted assumptions, we 

have 

(A35) Ej. J {[py - r-p. J (p-p. I  + /')] [-exp(-% py ly)]} = / [py - r^. j (py. I +  2  Q  Ij)] 
PT 

[-exp(-X pj I-p)] d n ( p j )  

where rfMCpf) = • 
CT'p VZ 7C 

exp PT - M-TY 

/ -J 
rfpT 

But 

(A36) -exp(-A, pj I-p) exp 
prp, . 

/ 

= -exp[(X Gy ly) /2] exp(-A, jly ly) 

exp - I 
PT " (l-^T " ^ ^T ^T) 

The first two terms in the right-hand side of (A36) do not depend on p^, so that they can be 

taken outside the integral in (A35). Hence, the integral to solve in (A35) is 

(A37) / [py - rj.j (p-p.j +20 I'p)] ^ 
PT CTT V 2 K 

r 2 loi I P-P -  (JLY -  X GY IF) 21 
expi 

(Jy 
r t/py = liy - X CT-p LY -  r-p.J (py.! +20 LY) 
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Substituting (A35) through (A37) into (A34), and noting that [-^ exp(-X r^.i JtT.i)] < 0 

2 
and {-exp[(A, CTj I-p) /2] exp(-A, |ij ly)) < 0, yields 

2 
(A38) li-p - r-p.j Pf.! - (2 r-p.j 0 + A, Gj ) Ij < 0, 

2 
Ij > 0,1-p [jly - rj.j p-p.j - (2 rj.J 0 + X Gy ) ly] 

Solving (A38) for Ij gives expression (2.22). 

Example of Optimum Forward-Looking CARA Storage at Date T-2 

According to (A33), the Kuhn-Tucker condition corresponding to is 

3£T.2 
(A39) — = -X r^.i exp(-l r'p_2 rj-i ̂ t-2) 

dlT.i 

3£'r.2 
Et.2{[PT-1 " ̂ T-2 (PT-2 + ' '^^''It>0^T-1 } ^ 0. IT-1 ^ 0, ^T-l ^ 

dlT-1 

where: DP_2 = exp(-A, r'p.2 rj.j 71:7.2) ET-2('^^''Ii'>0^T-P 

£T-1 ~ Gxp(-1 rj.^ %T_i) E'p.2[-exp(-A, py Ij)]. 

Expression (A3 9) can be rewritten as 

(A40) E'p.2{[p7.i - r'p_2 (PT-2 + 20 ly.^)] maxj^^QEf.i} > 0, ly.j > 0, 

IT-1 E7.2{[PT-1 - ̂ T-2 (PT-2 + 2 0 I^.j)] maxj^^g^T-l ) 
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because [-X r^p.j exp(-X rj_2 ^T-l ^T-2)] < 0 and /'(IT-I) = 20 If.!. But 

(A41) Ej.i[-exp(-X.p'j'I'p)] = J -exp(-X, pi^ IT) ^/«(Px) 
PT 

2 
= -exp[(X, ly) /2] exp(-A, jiy ly) 

J exp - I 
PT V 2 7t 

2 
PT " (l-^T " ^ 

Cy 

21 
^ d p j '  

2 
= -exp[(A, Gy If) /2] exp(-A, jHy If) 

by application of expression (A3 6). Therefore, 

(A42) maxj^>o£7. j = maxj^>o {exp(-A, rj. j KJ. j) Bp. j [-exp(-A, p^ Ij)]} 

2 
= maxj^>o{-exp[-\ r^.i (p^.j I7.1 - P7.11-p - 017 )] 

exp [(A, Gy 1^)^/2] exp(-X Hy If)} 

= -exp(-A, ry.j pf.j If. j) 

2 2 
exp[-A, If (|if - rf.j Pf.j)] exp[A, If (rf.j 0 + A, Of /2)] 

where If is given by (2.22). Substitution of (A42) into the first inequality of (A40) yields 
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(A43) Ej.2{[P7.i - ^T-2 (PT-2 + 2 0 ) = 

J [PT-1 " ̂ T-2 (PT-2 + 20 It.i)] [-exp(-X, rj.^ py.j Ij.])] 
PT-1 

2 2 
exp[-X ly (|j,j - f'p.j Px-i)] exp [A. I-p (r^.i 0 + X, CTj /2)] (/«(py.j) 

whereùf«(pY.2)=-
CT-p. I 

exp fPT-1 - ^^T-lf 

ax-1 / -I 
d p j - i  

But 

(A44) -exp(-% r^.i p^.j ly.^) dn(pj_i) = -exp[-X, rj.j I^.i (Hy.i - X rj.^ Ix.l/2)] 

a^.i ^ | 2 K  
exp - ^ 

PT-1 " (M-T-1 • ^'"T-l *^T-1 ^T-l) 

^T-1 
^PT-1 

The first exponential term in the right-hand side of (A44) is negative everywhere and does not 

depend on pj.j. Hence, the optimum I-p.j may be solved from a simplified version of (A40), 

namely, 

(A45) /Î:O<o,IT.I>O,IT.I/(:O = O 

where ATq = / [PT-1 " ^T-2 (PT-2 + 2 0 ^ 
PT-1 aj.i-\j2K 

2 2 
exp[-X ly (ny - tt-I PT-l)] Gxp[l l'y (rj.^ 0 + A, aj /2)] 

exp -
PT-1 " (l^T-1 • ^'"T-l ^T-1 ^T-l) 

^T-1 
^PT-1 
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Recalling that the optimum I-p is given by (2.22), we can rewrite ATQ as^ô 

IXj/iT-l 
(A46) ATq = J ATj exp[-X Ij (fly - r^.j p^.j)] 

0 

2 2 
exp[Xlj (rq-.j 0 + X ay/2)] (ipq-.j + J K-^ (1^-^-1 

^x/rj-i 

where K-^-
[PT-1 " ^T-2 (PT-2 + 20 ly.i)] 

(j-p, - 1 ^ 2 %  

expi 
PT-1 " (J^T-1 " ^'"T-l ^T-1 ^T-l) 

^T-1 

The second integral in the right-hand side of (A46) may be divided into two terms as follows 

(A47) ; dpT.i = / 

Hj/rT-i HT/''T-1 

[PT-1 " (l-^T-1 ' ̂ ry.i IT-I)] 

Cp. 1 ' { i n  

expj- 5 
PT-1 " (^^T-1 " ^'"T-l ^T-1 ^T-l) 

CTt-I 
^PT-1 

+ [|^T-1 " ^ ̂ T-1 ^T-1 ^T-1 " ''T-2 (PT-2 + 20 I7.1)] 

H^/^T-l ^T-1 V2 71 
expi-

PT-1 " (l^T-1 " ^'"T-l "^T-l ^T-l) 

^T-1 
t'PT-l 

By application of the rules for truncated means of the normal distribution (Maddala, 

1983) to the first term in (A47), and by noting that the integral in the second term is just the 

^^Note that by the normality assumption the actual integration is from -«> to +<». 
However, in the numerical examples we will use parameters such that the probability of having 
PT-1 <Ois negligible. 
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area under the normal distribution to the right of (iJ.j/r'p.j), the solution to (A47) can be found 

as 

1 12 
(A48) / ATj rfpf.i = exp[-2 (I^T/T-I) ] 

y 2  K  

2 
+ [M-T-1 " ^ ̂ T-L ^T-1 ^T-1 " '•T-2 (PT-2 + 20 [1 - F(ZQ)] 

1 1 2  
exp[-2 (M^t/^T-I) ] 

2 
+ [L^T-1 " ̂ T-2 PT-2 • '"T-2 © + ̂  R^.J CTJ.J ) LY.}] F(-ZO) 

2 
where: ZQ = -(117.1 - ii-p/r-j'.j - X r^.^ Oj.i 

F( ) = cumulative distribution function of the standard normal distribution 

Applying the same strategy to the first right-hand side integral in (A46) yields 

M'T/Ï'T-I 2 2 
(A49) J K-^ exp[-A, Ij (fly - rj. j py.^)] exp[\ (ry.^ 0 +1 Cy /2)] t/py. j 

0 

= (1 + a-r.i^ K2)^'^ exp(- \ K2 

T T-1 [p'p.j - rj_2 (PT.2 + 20 I7.1)] 
'  J  2 - 1 / 2  I 

0 07.1 (1 + CJ'p.i K2) v 2 7t 
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2 2 2 
1 PT-1 " (l^T-1 " ^ ""T-l ^T-1 ^T-1 + °'T-1 ^2 ^^T/''T-l)/(^ + ^T-1 ^2) 

exp^. _ - 2 ^ .-1/2 
ctt-1 + ^T-1 ^2) 

^PT-1 ) 

: (1 + K2)^'^ exp(- \ ^2 ̂ 1^) 

T T-1 [pY 2 - (HY-l - ^ I^-l + ^^T-l ^2 I^T/'"T-I)/(^ + Oi%i ATg,)] 
' J  2 - 1 / 2  I 

0 cy-p.i (1 + aj.i K2) Y 2 K 

exp 

2 2 2 
PT-1 " (l^T-1 " ^ "^T-l *^7-1 ^T-1"*"^T-1 ^2 + ^T-1 ^2^ 

2 ^ ,-1/2 ' 
<^7-1 + ^T-1 ^2) 

^PT-1 

2 2 2 
+ [(l^T-1 " ^ '"T-1 ^T-1 ^T-1 + ^T-1 ^2 ̂ ^T/'^T-l)/(^ + "^T-l ^2) " ^7-2 (PT-2 + 20 I7.1)] 

I^T/rT-i 

/ 
0 *^7-1 + ^T-1^ ^2) V 2 7t 

exp 

2 2 2 
PT-1 ' (^^T-1 • ^''T-1 *^T-1 ^T-l+'^T-l ^2 I^T/''T-1)/(1 + ^T-1 ^2) 

2 ^ ,-1/2 
c^T-l + (^T-1 ^2) 

^PT-l) 
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1 2  2  1  1  2  
= zi/zQexp(-2 o-r.i K2Z1 ){- -== exp[-2(HT/i"T-l) ] 

y j i  K  

2 2  2  
+ [(M.T-1 - ̂  ""T-l ^T-1 ^T-1 + ^T-1 ^2 l^y/^T-l) (^l/^o) " ^T-2 (PT-2 + 20 Ix-i)] ̂ (z^)} 

2 2 
where: K2 = rj.^ X/(2 0 + A. Cy ) 

zi = (1 + K2) ZQ 

Substituting (A48) and (A49) back into (A46) and rearranging gives (2.23), which is 

the final expression to solve for I-p. j. 

Proof of Propositions 2.5 and 2.6 

We will only outline the proof of Propositions 2.5 and 2.6 because they can be done 

employing the same techniques we used to show Propositions 2.3 and 2.4, respectively. 

We may express FOC (2.28) in covariance terms as 

M r Ai ^ ^^0(^1'! Pi)] f= ro [0 SQ + c'(QO)] if QQ > 0 
(A50) Eo(p,) + |< + ,.(0)] if Qo = 0 

where: Eo(Mi'l PI) = J M^XW^, e^) ^^(sil pg, SQ, PI) Û^SJ > 0 
^1 

Eo(Mi'l pj) is the conditional expectation of Mj' given pj, and^i(sil pg, sg, pj) denotes the 

conditional density function of sj given (pg, sg, pj). Expression (A50) is analogous to (2.11) 

and (2.12) for the risk-averse productive firm. Similarly, a risk-neutral productive finn is 

characterized by: 
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For a myopic risk-averse decision maker we have EQCMJ'I pj) = Mj, and 

Therefore, 

f <  0 if QT.I > 0 
(A53) Cov(pT, M-r') {= 0 if Q-^.j = 0 

Proposition 2.5 follows immediately by noting that (A53) is analogous to (2.14). 

For a nonmyopic CARA firm with output and material input prices related as in (2.29) 

or (2.30), we have 

9En(Mi'l pi) 9s 1 
(A54) " = RI ... R-R.I QQ EO(MI"I PJ) - RJ ... R^.I 0 Eo(Qi M^" ^ I P^) 

dpi dpi 

+  !  I  M z '  W P 2 . S 2 '  P 0 . S 0 , P , . s . )  

^ P2 S2 ^Pl 

+ ... + maxQ >O{ J J maxQ >O[ / J ••• 
^ P2 «2 P3 S3 

; f My^«T(PT.ST'P0.S0 PT-L ^T-l) 

PT-l^T-l PT "PI 

gT-l(PT-l' ^T-l' PO' •••'PT-2' ST-2) ^^T-l ^PT-I^ ••• g2(P2' ^2' PO' Pi' ^l) ̂ /S2 ^/P2) 
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The term [rj ... ry.J QQ EQ(MJ"I pj)] is negative if QQ > 0, and zero if QQ = 0. The term 

[- rj ... r-p.j 0 EQCQI Mj" pj)] is negative because Qj > 0, Mj" < 0, and 

9sj/3pi > 0. Finally, the terms maxQj>o(-) have ambiguous signs. 

Expression (A54) is analogous to (2.13) for the CARA case, so that the proofs under 

assumptions (a), (b), and (c) in Proposition 2.6 are straightforward. 
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APPENDIX B. APPENDIX TO CHAPTER III 

Proof that ^t+l"' Pt+l) < 0 

From the proof of Proposition 3.1 we know that = 0 if ft+1 - '*t+l [Pt+1 + ''(0)]. 

and > 0 otherwise. Hence, 

(Bl) ^t+l"' Pt+l) ~ / ^t+2 ^t+l"/t+l(^t+l' PO' •••' Pt+l) ^^t+1 
4+1 

~ r ^ ^t+1 A+l^^t+l' PO'^0' *••' Pt+l) ^^t+1 
rt+l[Pt+l+' (0)] 

But Mj+j" < 0, so that E^(I^^2 ̂ t+1 Pt+l) <0 if the probability that 

ft+i > [Pt+i + '"'(0)] is positive, i.e., if 

(B2) / PO' fO' •••' Pt+l) A+1 > 0 
:t+l[Pt+l+' (0)] 

Proof of Proposition 3.4 

By substitution of FOC (3.21) into FOC (3.20) and rearrangement we obtain 

(B3) ft - r^ [ O  sj + c'(Qt)] < 0, Qt > 0, {f^ - r^ [O St + c'(Qt)]} = 0 

Therefore, 

a. If f( < rj [0 Sf + c'(0)], then = 0. 

b. If fj > r^ [O Sj + c'(0)]. then Qj > 0 and f^ = r^ [O Sj + c'(Qi)]. 
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Proof of Proposition 3.5 

Rewrite FOCs (3.21) and (3.22) as 

(B4) [fg - EO(PI)] MQ' = COV[PI, EO(MI'l PJ)] 

(B5) [fg - Eo(si)] MQ- = Cov[si, Eq (Mi \ Si)] 

where: Eo(Mi'l pj) = / J ^ M^' A:i(si, f^, f^l pg, sg, fg, p^) cff^ (/f^ > 0 
si fi ^ 

EO(MI'ISI)= J J J MI'/I( p i , f i , f 5 l p g ,  S g ,  f g ,  f ^ ,  S i ) £ f f 5 r f f i ^ / p i >  0  

Pi h 

The function fj, f^l pg, Sg, fg, fg, pj) is the conditional density of Sj, fj, and f^ given 

(pg, Sg, fg, fg, pj), and /^(Pi, fj, fjl pg, sg, fg, fg, Sj) is the conditional density function of 

Pi, fi, and fj given (pg, sg, fg, f^, sj). 

If the firm is myopic and both forward prices are simultaneously unbiased, we need 

Cov[p'p, Ej.2(M'p'I p-p)] = Cov[S'p, E'p.i(M'p'l sy)] = 0. This is satisfied if = Qj.j and 

F^_l = 0 because such hedge yields Mj' = My' independent from both py and sy. 

Proof of Proposition 3.6 

In the case of a forward-looking CAR A firm we have 

9En(Mi ' l  pi) 
(B6) ^ =ri ...rT.i(Qg-Fg)Eg(Mi"lpi) 

dpi 
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([Zd/7 Zsp Zjp »Ij 'Is 'Id 'Oj 'Os 'Od '3j '3s ' Zd )Z f  

••• (I'Xdp I'Xgp I"Ig/7 I"^;; 

'3"JLJ 'Z'JLS '3"Xd '••• 'OJ 'OS 'Od 'I'Xj 'I'Xg 'I"Xd)I"Xy 

I dp 
( Idp  Xsp  l }p  

(I"XJ 'I"XJ 'I'XS 'I"Xd '••• 'OJ 'OJ 'OS 'Od JXJ 'XJ 'XG 'Xd)X/'G 

X 1"lL 
Y S^ XJ XS XD S^ I"XT I'XSI'XD 
^  /  r  /  /  I  l '  I  I  

s^ Ej Es Ed _  s^ Zj Z s  Z d  J  s^ Ij Is 
/ Jf I / )^PxEiu Î / / / l^PxBui} / / / 

Is/? Ij/7 ^/7 (Id 'Oj 'Os 'Od 1^ 'IJ 'Is)I:y 

Idg 
[ ( ^ d p Z s p Z ^ p ^ p  

(IJ 'IJ 'IS 'Id 'Oj 'Oj «Os 'Od 'Zj 'Zg 'Zd)ZrQ 

y  s^ Zj Zs Zd Y s^ Ij Is 
J j J J j^PxBui} J / J 

hp i>P ^ f /' r 

(ID'OJ'OJ'OS'Od |IJ'IJ'IS)I:YE " ^ 

ZZl  
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'3"JLj 'Z'Xs 'Z'JLd '••• 'Oj 'Os 'Od 'I'lj 'l"J.s 'l"Xd)l"X/' 

( X d / 7  I s p  ̂ p  
Isg 

(I'XJ ' I "XJ ' T "XS ' I "Xd ' ••• 'OJ ' OJ 'OS 'Od |XJ 'XJ 'XS 'Xd)X^G 

JL I "J-
Y S^ XT XS Xd ^ S^ I"XT T"XsI"Xd 

I  I  !  I  !  j '  S  !  

s^ £j £s Ed _ Zs Zd , s^ Ij Id 
f I J J )^PxBiu / J J J l^PxBiu} J i / • 

Up TJP (Is 'OJ 'OJ 'OS 'Od 'TJ 'Id)I/ 

Isç 
[ f d p Z s p Z j p ^ p  

(IJ 'Ij 'Is 'Id 'OJ 'OJ 'OS 'Od |Zj 'Zj 'Zs 'Zd)Zfç 

Y S^ ZJ ZS Zd , S^ IJ Id 
^  I I I !  I  f  I  •  

. T Isp Y  ^  
I d p  IJP _ / J / -

(Is 'OJ 'OJ 'Os 'Od I^ 'IJ 'ld)I/g " ^ 

IÇ))0A[4,1"XJ--- I-XJ... IJ-= ——— (I 
s (isi/Mrae 

[s/) IJ/? (Id 'OJ 'OS 'Od 'IJ 'Is)I:y 

£ZI 
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rff^-1 rff-p.j rfs-p.j DPJ.I)... 

y2(P2' ®2' ^2' 4' PO' ®0' %' Pi' ^1' ^1' ^4 '^h ̂ ®2 ^P2Î) 

/l(pi, fj, f^l PQ, SQ, fg, fj, si) DFI C/PI 

Under assumption (a), expressions (B6) and (B7) simplify respectively to 

3EA(MI'I pi) 
(B8) _JL_LJlL=ri...rT.i(Qo-Fo)Eo(Mi"lpi) 

dpj 

3Ef)(Mi 'I SI) E 
(B9) " ^ =-ri ...rT.iF5Eo(Mi"lsi)-ri ... r^.i O EQCQI Mj"! si) 

The FOCs require Cov[pj, EgCM j'l pj)] = Cov[si, Eo(M2'l s j)] = 0 under unbiased forward 

prices. This condition is met if BEgCMj'l pi)/3pi = 9Eo(Mj'l sj)/3s2 = 0, which requires 

setting FQ = QQ and FQ < 0. 

The result under assumption (b) follows because 

9En(Mi'l pi) 
(BIO) lim;^_^_ " ^ = RI ... r^.J (QQ - FG) Eo(Mi"l PJ) 

dpi 

aEn(Mi'lsi) s 
(BID lim;L-4o. =-^1 ... r^.j FJ Eo(Mi"l sj) 

- RJ ... RY.J O EO(QI MJ"l SJ) 
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Proof of Proposition 3.7 

In the absence of a forward market for material input, the dynamic programming 

problem to solve for the optimal decision vector is 

(B12) MjCWy, e^) = maxtj^ftCW-j-)! Cf 

where: fjCWj) = UCWj) 

FTW = / J J 
Pt+1 ̂ t+1 n+1 

^t+l(Pt+l' ®t+l' ^t+l' PO» ^0' •••' Pf ®t' ^t) ^4+1 ^^t+l ^Pt+l' 0 < t < T 

dj = (Qt, Ft) if 0 < t < T, dj = (Or, 0), Qt ̂  0 • 

=Pt Qt-1 - ̂  h  Qt - c(Qt) + (ft-i - Pt) Ft-i 

Terminal wealth is given by (2.1), and Sj+j, f^+il pg, sg, fg..... Pt. St, ft) is the 

conditional density function of Pt+%, St+i, and fj+j given (pg, sg, fg,..., pj, St, ft). The 

maximum attainable utility at the terminal date is 

(B13) M'pCWj, ej) = U[rY_2 + Py Qy.j + (fy.^ - py) FT-I1 

and the FOCs for dates 0 < t < T are 

(B14) ^ = rt+i ... r-T.i [Et(pt+i Mj+j') - rj (0 St + C) Mt'] < 0, Qt > 0, Qj ^ = 0 
oQj oQj 
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d£t 
(B15) _ = Tt+i ... r-r.i [ft Mf' - EfCpt+i Mj+i')] = 0 

d^t 

Expression (B15) can be rewritten as 

(B16) [FO - EQCPI)] MQ' = Cov[pi, EO(MI'L pj)] 

where: EQCMI'I pj)  = /  /  Mj' wi(SJ, FJL pg,  SQ, FG, PI) RFFJ rfsj > 0 
Si fi 

The function «jCsj, fjl pg, sg, fg, Pj) is the conditional density of Sj and fj given (pg, sg, fg, 

pj). If the firm is CARA and cash prices are related as in (2.29) or (2.30), we have 

9Eg(Mi 'I pi) 
(B17) ^ ^ =ri ...rr.i(Qo-Fo)Eo(Mi"lpi) 

dpi 

-ri ... r^.i <E>Eg(Qi Mj" Ipj) 
dpi 

r Ml" aoi(filpg,Sg, fg, pi) 

" f (  1  M  

Ol(fllP0, SO,fO'Pl)^('l 

J {maxj [ I J J maxj ( / J J ... J j  J  
h ^ P2 S2 f2 F P3 S3 f] PT-l^T-l^T-l 
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Mj" 

PT * T i fi X 

am-rCPT. ST, fyl PQ, SQ, fQ. PT-1> Sj-l'^T-l) ,r . , ^ 
at-y as y apy) 

dpi 

^T-l(PT-l' ST-1' %-I' PO' SQ' ^0' •••' PT-2' ^7-2' %2) ̂ ^T-l ^®T-1 (^PT-l) ••• 

/»2(P2' ^2' PO' Pi' SI, FI) df2 ds2 dp2\} OICFJL pg, SQ, fg, pj) 

where ojCfjl pg, sg, fg, pj) is the conditional density function of fj given (pg, sg, fg, pj). 

Under assumption (a), expression (B17) reduces to 

9En(Mi 'I PI) 
(B18) " y =ri ...rT.i(Qg-Fg)Eg(Mi"lpi) 

dpi 

- ri ... O Eg(Q^ Mj" —1 1 pj) 
dpi 

which is positive for Fg > Qg. Unbiased forward price requires Cov[p2, EgCMj'l p^)] = 0, 

which means that it is necessary to have Fg < Qg (otherwise, Cov[pj, Eg(M2'l p^)] > 0). 

The result under assumption (b) follows from the fact that 

9Eg(Mi'l pi) 
(B19) lim;^^_ = ri ... r^.j (Qg - Fg) Eg(Mi"l pj) 

dpi 

- rj ... ry.j 0 Eg(Qi Mj" —^ I pj) 
dpi 
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APPENDIX C. APPENDIX TO CHAPTER IV 

Derivation of FOCs (4.3) through (4.5) 

The FOCs corresponding to the Lagrangian for t < T are 

3Mt+i(W7, et+i) ait+i 

ait+1 ap, _ 

+ r( Tf+i ... tj.2 ̂ T-l (Pt + (') ^t'(^T' ®t) " "Ht 

"3Mt+l(WT.=t-n) 9't+I 

_  â o f "  w 

- rt rt+i ... FT-Z rT-1 W* " '") 't) " lit ^ ^ "• Qt ^ 

9Mt+i(WT, et+i) 

- rt rt+i ... tj.2 TT-I («t + e^) + 

plus (4.6) through (4.9). But first note that 

a£t 
(CI) 

a£t 
(C2) —1 =E, 

aQt 

a£t 

(C4) 
31, t+1 

3Pf 
= -1 

(C5) 
ai, t+1 

3lf 
= 1 
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(C6) 

(C7) 

(C8) 

(C9) 

31. 

31 

t+1 

3Qt 
s 

= 1 

t+1 
= 1 

3S, 

31: t+1 
=: 1 

31: 

31 t+1 
= -l 

dQt 

dQt 
(CIO) —i = 1/0 

aOt 

In addition, 

3M.(WT,e,) ^ 

3L ' 

3Mt+i(WT, ej+i) 3lt+i 

31, t+1 31, t J 

rt r^+i ... tj,2 rj-l e^) + T|t 

= rt Tt+l • • • ^T-2 ^T-l Pt MtXW-r, e^) 

(C12) =B, 
3l! 

3Mj^I(WT, e^+i) 31(^1 

31 t+1 31. 

Ft ... rj.2 i"T-l Mt'CWj, Cj) + Tij 

= ft Tf+i ... Tj.2 Tj.i St Mt'(WT, Cj) 
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where the second equalities in (CI 1) and (CI2) are derived by employing expressions (CI), 

(C3), (C4), (C5), (C7), and (C8). From (Cll) and (C12), it follows that 

3Mt+i(WT, e*. i) 
(C13) — Tt+i rt+2 ... rT.2 ̂ T-l Pt+1 e^+i) 

°4+l 

3Mfj.i(WT, Ct+i) 
(C14) -s = ^t+1 rt+2 ••• ^T-2 ^T-l St+1 Mt+i'(WT. «t+l) 

^^t+l 

Finally, by substituting (C4)-(C10) and (CI3)-(CI4) into FOCs (C1)-(C3), and by rearranging 

a little, we get expressions (4.3) through (4.5). 

Rationale for Including Production as an Explanatory Variable of Output Sales 
* 

For simplicity, assume that at date t optimal production and sales levels are Qj and 

zero, respectively. Let all exogenous variables stay unchanged for the remainder j decision 

dates comprised in the observation horizon O. It follows from expression (4.11) that optimal 

production for all decision dates t+1 through t+j will remain unchanged, so that production 

over the observation horizon will be 

(C15) Qo=jQ* 

According to expression (4.10), optimal sales in the decision dates t+1 through t+j will be 

identical to the changes in beginning stocks, which are equal to optimal production in the 
* * * * * 

previous decision date (i.e., = 0, and P^^^ = Pt+2 = ^t+j ~ Qt Hence, sales over 

the observation horizon are 
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* 
(C16) Po = 0'-i)Qt = (i-i/j)Qo 

According to (C16), observed sales (PQ) approach asymptotically observed production (QQ) 

as the observation horizon lengthens with respect to the decision horizon (so that j —> «»). This 

means that in the regression corresponding to sales we must include production as an 

explanatory variable if j > 1, even though both quantities are endogenous. Note also that the 

effect is from production on sales and not the other way around, so that sales ought not be 

included as an explanatory variable of production. 

We can apply the same reasoning to motivate the inclusion of processing as an 

explanatory variable in the regression for material input purchases. 

Restrictions and Identities Corresponding to Equations (4.13) through (4.16) 

The identities and restrictions for the soybean complex are, respectively, 

(C17) L'=I^.I+SC.L-QW Soybean Stocks 

(CIS) = Oil Stocks 

(C19) IR=FI-C+QM Meal Stocks 

(C20) Q° = Q(/0° Oil Production 

(C21) Q{" = Q^/0^ Meal Production 
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Expressions for RETURN Variables 

The specification of the RETURN variables is as follows: 

(C22) RETURN^ = l/r^ 

(C23) RETURN^ = l/r^ 

(C24) RETURN® =L/RT(fj!T^I^P°)12/k 

(C25) RETURN[" = 1/rt 

k is 2 for t = January, March, May, June, October, and November; it is 3 for t = February, 

April, September, and December, it is 4 for t = August; and it is 5 for t = July, h is 2 for 

t = January, March, May, June, September, and November; it is 3 for t = February, April, 

August, and October, and it is 4 for t = July. As inferred from information on open interest, 

average these are the most used combinations of hedge-placement/delivery months. 

Derivation of Long-Term Elasticities from Structural Parameters 

In a long-term equilibrium the beginning stocks must remain unchanged from date to 

date, hence 

(C26) = => S = Q® 

(C27) = pO = QO = 
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(C28) l[" = Çi=l'" => pm = Qm = QS/(^m 

where we drop the time subscripts when we refer to long-term values. 

From the regression for oil sales we have 

(C29) ln(P°) = ai - 0.105 ln(RETURN°) + 0.115 ln(I°) + 0.697 ln(Q°) 

where aj (i = 1, 2,..., 6) represents terms in the regression that are irrelevant for our purposes. 

Substituting (C27) into (C29) and solving for ln(I°) in terms of In(Q^) yields 

(C30) ln(I°) = a2 + 0.913 ln(RETURN°) + 2.626 ln(Q®) 

By performing analogous operations for meal sales and soybean purchases we get 

(C31) ln(l'") = a3 + 0.742 ln(RETURN'^) + 1.008 ln(Q®) 

(C32) In(I^) = «4+1.114 In(RETURN^) + 0.533 ln(RETURN^) + 0.846 In(Q^) 

+ 0.061 ln(I°)-0.184 InU"^) 

Finally, by replacing (C30) and (C31) into the regression for crushings (C33) 

(C33) In(Q^) = «5 + 0.075 In(RETURN^) - 0.0256 ln(l°) - 0.052 ln(P) 

+ 0.874 In(Q^) - 0.102 ln(Q®) + 0.291 In(CAP) 
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and solving this for In(Q^) we obtain 

(C34) In(Q^) = ag + 0.216 In(RETURN^) - 0.067 ln(RETURN°) 

- 0.111 InCRETURN"^) + 0.835 In(CAP) 

Expression (C34) is the basic one to calculate the long-term equilibrium elasticities for 

crushings. Substitution of (C34) in (C30)-(C32) allows us to obtain the long-term elasticities 

for inventoiies. The mean values used in the calculations were 

Expressions for PERFOR and NAIVE Variables 

The PERFOR and NAIVE variables are defined as follows: 

(C35) PERFORJ = 1/rt [(p°+k/®° + pJIk/^'^yst] 

(C36) PERFORt^ = l/rt(st+h/St)^^^ 

(C37) PERFOR® = l/r^ (PtVPt°>^^^ 

(C38) PERFOR[" = l/rj (p[lJk/p[")^^/'' 

(C39) NAIVEj = 1/rj [(p°/0° + pJ^/O'^Vs^] 
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(C40) NAIVEj = l/rj = l/r^ 

(C41) NAIVE° = l/rj (p°/p°)^2/k = 

(C42) NAIVE[" = l/ft = l/r^ 

k is 2 for t = January, March, May, June, October, and November; it is 3 for t = February, 

April, September, and December, it is 4 for t = August; and it is 5 for t = July, h is 2 for 

t = January, March, May, June, September, and November; it is 3 for t = February, April, 

August, and October; and it is 4 for t = July. 
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